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Abstract—Convex functions are a class of commonly seen 

functions with good properties, which have been widely applied 
to practical problems in mathematics and many other fields. 
This article mainly introduces the application of convex 
functions in proving basic inequalities, integral inequalities, 
trigonometric function inequalities, and other aspects through 
examples. 

Index Terms—Convex function, inequality, integral 
inequality, trigonometric function inequality. 

I. INTRODUCTION 

The concept of convex functions was first reflected in the 
theory proposed by Danish mathematician Jensen, and also 
appeared in the theory of another mathematician Adama. 
Jensen's inequality is generally used to prove non infinite 
inequalities, It is an important link connecting the sum of 
infinite terms and the integration. If the geometric and 
arithmetic mean of two non-negative numbers are to be 
refined, it needs to be calculated through the Adama 
inequality. In numerous works both at home and abroad, the 
study of convex functions has gradually shifted from 
preliminary definitions and properties to convex analysis and 
the study of multivariate convex functions, and the 
exploration of convex functions has gradually deepened, 
Convex functions have become an important research 
direction in mathematics [1-6]. 

The convexity of a function can be used to find the 
inflection points, maximum points, and stable points of the 
function, as well as to solve convex optimization problems. 
This article mainly introduces the application of convex 
functions in proving basic inequalities, integral inequalities, 
trigonometric function inequalities, and other aspects through 
examples. [7] examined the development and refinement of 
possible mathematical models for the intellectual system of 
career guidance. Mathematical modeling of knowledge 
expression in the career guidance system, Combined method 
of eliminating uncertainties, Chris-Naylor method in the 
expert information system of career guidance, Shortliff and 
Buchanan model in the expert information system of career 
guidance and DempsterSchafer in the expert information 
system of career guidance method has been studied. [8] 
discussed that according to the observations in this paper, an 
existing mathematical model of banking capital dynamics 

should be tweaked. First-order ordinary differential equations 
with a "predator-pray" structure make up the model, and the 
indicators are competitive. Numerical realisations of the 
model are required to account for three distinct sets of initial 
parameter values. It is demonstrated that a wide range of 
banking capital dynamics can be produced by altering the 
starting parameters. One of the three options is selected, and 
the other two are eliminated. 

II. APPLICATION OF CONVEX FUNCTIONS 

Convex functions are a special type of function that has a 
wide range of applications in the field of mathematics. When 
proving inequalities, certain special properties of convex 
functions are often utilized Some unique properties of convex 
functions can transform tedious inequalities to obtain the 
basic form of convex functions, and thus draw conclusions. 
Below, we will provide examples to illustrate the application 
of convex functions in the proof of inequalities. 
 

A. The Application of Convex Functions in the Proof of 
Basic Inequalities 

Example 1. Proves the inequality 

 

n
nn ba

ba 





 


2

)(
2

1
,  

where a  and b  are numbers greater than zero and are not 

equal, 1n . 
Proof. The use of construction methods to obtain suitable 

convex functions and utilize their properties to solve 
problems. 

Assuming )1,0()(  nttth n , perform first-order 

differentiation on this function to obtain 1)(  nntth , and 

then perform second-order differentiation on it to obtain  
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According to the theorem for determining convex 
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Therefore, we obtain 
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Example 2. Proves that .)(
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Proof. Assuming xeh  , by taking the second derivative 
of the function and judging its sign, it is concluded that the 
function is a convex function in the defined domain.  

Use m  to represent a , n  to represent 
2

ba 
, and p  

to represent b  ( pnm ,,  are numbers within the domain). 
xeh   is a convex function within the domain. From the 

properties of convex functions, it can be seen that if 
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Obtained after sorting  
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Thus we have  
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B. The Application of Convex Functions in the Proof of 
Integral Inequalities 

Example 3 If f  is a convex function on the interval 

)0(],0[ bb , then 
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holds for any ,],0[, byx  byxyx  , . 

Proof. If 0,  xyx , there is obviously  
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properties of convex functions that F  is still a convex 

function on )0(],0[ bb . However, yxyx  , so 
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so we have 
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Example 4. If the function ],[)( baRxf   and 

],[,)( baxMxfm  , )(uh  is a continuous convex 

function on the interval ],[ Mm . Prove that  
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Proof. Divide the closed interval ],[ ba  n  equally, with 

points in order of bxxxa n  10 . Because 

)(uh  is a convex function, so we have 
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i.e., 
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Since ],[)( baRxf   and )(uh  is continuous convex 

function on the interval ],[ Mm , so 

].,[))(( baRxfh  Setting n , then we have 
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C. The Application of Convex Functions in the Proof of 
Triangular Function Inequalities 

Example 5 In triangle ABC, prove that: 
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Proof. (1) Set ),0(,sin)(  xxxh , then 

.0sin)(  xxh  Since )(xh  is a convex function on the 

domain of definition, and according to Johnson's inequality,    
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Therefore, we have  
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（2）Assuming ,lg)( xxf  , then )(xf  is a convex 

function in the domain ),0(  , and because sinA，sinB，

and sinC are all positive numbers, and ,lg)( xxf   is 

monotonically decreasing in the domain, according to 
Johnson's inequality,  
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Example 6. Let ba,  be any non negative real number, and 
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Proof. Assuming that ),0(arctan)(  xxxp  the 

second derivative of this function is 
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Obviously, the function )(xp   is a strictly convex function 

on ),0(  . Therefore, for any non negative real numbers 

ba, , we get 
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Therefore, we have  
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From the above example, it can be seen that when proving 
certain inequalities, using the properties of convex functions 

and transforming them through constructors can simplify the 
proof. The key lies in constructing appropriate functions. 

III. CONCLUSION 

For some inequalities that are difficult to prove, a simple 
proof can be provided by using convex functions. By using 
convex functions, these seemingly cumbersome inequality 
proof problems become clear and clear. When using convex 
functions to prove inequalities, we often first modify the 
original inequality by constructing it into the function we 
need to obtain, thus solving the problem in a clear way. 

Convex functions are not only very useful in inequalities, 
but have been widely used in economics and even other fields, 
and are worth further exploration. 
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