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Abstract—Integral valuation, as the name implies, is a simple 

estimation of the integral, estimating the upper and lower 

bounds of the integral. The purpose of this thesis is to apply 

several common integral inequalities to the valuation of definite 

integrals, including general integral valuation inequalities, 

convex function inequalities, Schwarz inequality, etc., and to 

present examples to deepen the understanding of integral 

valuation. 

Index Terms—Integral valuation,,,, Schwarz inequality, 

Convex function inequalities. 

I. INTRODUCTION 

Integral valuation, i.e., no detailed integration operations 

are performed, and only some simple techniques are used to 

obtain the approximate results of integration, which can be 

divided into two types: narrow and broad integral valuation. 

Narrow integral valuation, i.e., finding the upper limit or 

lower limit of the integral by simple calculation. The 

generalized integral valuation, on the other hand, does not 

require a detailed specific upper or lower bound result, but 

simply proves that the integral is greater than or less than 

(greater than or less than) another integral. Generalized 

integral valuation is widely used in real life, so we need to 

study some techniques to perform integral valuation faster 

and better [1-4]. 

II. DEFINITE INTEGRAL VALUATION INEQUALITIES 

On [a, b], if f(x) is continuous, then we have Nxfn ≤≤ )(  
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On [a, b], if f(x) and g(x) are continuous and  
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Example 1： Estimate the approximate range of  
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Solution: Because xx sin2 is an increasing function on  
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Therefore, the upper limit of the definite integral is  
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And the lower limit is  
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Example 2: Prove the inequality 
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So f(x) is monotonically decreasing in the interval, so we have  
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Example 3: Let f(x) be a non-negative monotone 

non-increasing continuous function on [0,1] (i.e., 
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)()( yfxf >  holds if yx < ). Show that if 10 <<< βα  , the 

following inequality holds. 
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Proof: From the question set and the median theorem, we 

know that  
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And since 10 <<< βα , so 
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As we can see from the above example, the value estimated 

by the definite integral valuation inequality is extremely 

wrong with the actual maximum and minimum values of the 

function. The definite integral valuation inequality can be 

used for any simple valuation of definite integrals.  

III. VALUATION OF CONVEX FUNCTION INEQUALITIES 

Definition 1[1]. A function f(x) is said to be a lower convex 

function on the interval I if it is defined on the interval I and 

the inequality 
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function on the interval. The general term for the upper 

convex function and the lower convex function is called the 

convex function. 
Property 1.Let f(x) be a convex function on the interval  
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holds. 

Property 2.Let f(x) be a convex function on the interval , 

then  f’(x) is an increasing function on I and for any two points 

x1,x2 on I , the inequality 

))(()()( 12112 xxxfxfxf −′+≥ �  
holds. 

Property 3. Let f(x) be a convex function on the interval. 

Then there are two finite one-sided derivatives of f(x) 

everywhere on the interval I, and the inequality 

( ) ( )f x f x− +
′ ′≤  holds. 

Property 4. Let f(x) be a second-order derivable function on 

an open interval I, then the sufficient condition for f(x) to be a 

convex function on an open interval I  is ( ) 0,f x x I′′ ≥ ∈ . 

Example 4: Prove the following inequality. 
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So f(x) and g(x) are both convex functions on [0,1]. f’(x)and 

g’(x) are  increasing functions on I, so that f(x) and g(x) have 

minimum values on the interval which are taken at x = 0. 
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The same reasoning leads to  
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Example 5: Prove that  
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It is known that  
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is a convex function, and the rest of the cases are similar to 

Example 4. 

IV. SCHWARZ INEQUALITY 

Lemma 1[1]: If f(x) and g(x) are differentiable on [a, b], 

then the inequality 
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holds. 
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Example 6: Prove that if f(x) is differentiable 

and ( ) 0f x n≥ ≥  holds ( [ , ]x a b∈ ) then you have inequality  
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Proof: By the fact that f(x) is differentiable and 

( ) 0f x n≥ ≥  holds, so 1 1
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According to Schwarz's inequality, there is  
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 holds. 

Example 7: If f(x) is productable on [a, b], then  
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Proof: By Schwarz inequality we get 
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V. CONCLUSION 

We use several common and very important integral 

inequalities to perform integral valuation operations, 

including definite integral valuation inequalities, convex 

function inequalities, Schwarz inequalities, etc. Using integral 

inequalities for integral valuation, rather than directly 

computing the integral, not only shortens the integral 

valuation procedure, but also saves a lot of time and even 

improves the accuracy of the integral valuation. 
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