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Abstract—The paper addresses the problem of control design 

for Autonomous Underwater Vehicle (AUV) formation with 

control delays. A compact model consisting of the leader motion 

equation and the followers’ motion equations are built. The 

control-delay system is converted into an equivalent one without 

delays. Employing optimal control theory for linear systems, the 

optimal decentralized controls are designed. The simulation 

validates the proposed decentralized controllers are effective 

and simple. 

 

Index Terms—AUV, , , , ddddecentralized control, formation, 

simulation.  

I. INTRODUCTION 

Up to now, networks has been applied widely, e.g. in field 

experiments, research projects, commercial products, and 

military navigations. One useful task using networks is target 

tracking by Autonomous Underwater Vehicle (AUV) [1], 

fleets [2], unmanned aerial vehicle [3], multiagent rigid [4] 

for exploring, formations, and etc. Formation control methods 

are summarized by [5]. To improve the efficiency of the target 

hunting, a leader-follower formation algorithm is introduced 

[6]. A consensus control strategy for multiple unmanned 

underwater vehicles, a small AUV, with unmeasurable 

disturbances under the fixed and switching topologies is 

proposed [7]. While exploiting a leader-follower strategy to 

formation control and the vector Lyapunov function method 

to controller design, [8] employed discrete-event approach 

and supervisory control theory to switch between operational 

modes. A Lyapunov-based backstepping approach for 

developing cooperative motion control for multiple AUVs 

was presented, where the cooperative motion is achieved 

using a leader–follower formation strategy in the presence of 

discrete data transmission between the leader AUV and the 

follower AUVs [9]. A cooperative control problem in three 

dimensional spaces was considered and finite-time formation 

for AUVs with constraints on communication range was 

investigated, where a two-layer finite-time consensus control 

law is proposed to avoid leading to collapse on formation 

because of failure leader [10]. However, as is known, 

network-induced time delays are unavoidable [11]. Our 

previous work proposed a distributed tracking control 

algorithm considering coordinative communication among 

AUVs [12], as shown in Fig. 1. However, the unavoidable 

network-induced delays were not considered.  

In this paper, control-delay between network 

communication channels is taken into account. A leader and 

the   follower AUV systems are respectively modeled. 

Combining both leader and follower AUV systems, the 

leader-follower formation system is established. The 

exchanging information are assumed to be achieved 

completely from coordinative communication, where control 

delay due to network communication is encountered. By 

employing functional transformation method, the 

control-delay system is transformed to an equivalent one 

without time delay. Moreover, the influence generated by 

control delay is compensated by the integral terms of past 

control information in designed controller, which can be 

stored in memories easily. Simulation is conducted through 

Matlab program with one leader AUV and two follower 

AUVs. It illustrates that under the designed controllers, two 

followers track the leader satisfactorily keep prescribed 

distances eventually. The effectiveness and simplicity of the 

control algorithm are verified. 

 

 
Fig. 1. Leader-follower AUVs communicating over networks. 

 

The paper is organized as follows: after introduction, in 

Section II, the problem of leader-follower AUV formation 

with a control delay is formulated. Optimal decentralized 

controls are proposed in Section III. In Section IV, simulation 

validation is illustrated. Concluding remarks are made in 

Section V. 

II. PROBLEM STATEMENT 

Consider a leader-follower-AUV system. First, the 

leader-AUV model is given by 

0 0 0 0 0 0 0 0( ) ( ) ( ), ( ) ( )x t A x t B t y t C x tγ τ= + − =&       (1) 
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where 0

0

n
x R∈  is the state vector of leader-AUV equation of 

motion, 0

0

m
Rγ ∈  is the control input of leader-AUV, and τ  

is a known constant control delay from controller to actuator. 

The matrices 
0 0 0, ,A B C  are constant of leader-AUV equation 

of motion. Second, the th ( 1,2, , )i i k= L  follower-AUV 

equation of motion is given by 

0
( ) ( ) ( ), ( ) ( ) ( )

( ) ( ), 1, 2, ,

i i i i i i i i i

i i i

x t A x t B t e t D x t E x t

y t C x t i k

γ τ= + − = +

= =

& &

L
    (2) 

where in

ix R∈  is the state vector of the thi  follower-AUV 

equation of motion, im

i Rγ ∈  is the control input of the thi  

follower-AUV, and τ  is a known constant control delay from 

controller to actuator. The formation error between the 

leader-AUV and the thi  follower-AUV is denoted as 

0 0i i ie d d d= − − , where 0id  is the desired nominal distance 

between them. The matrices , ,i i iA B C  are constant of the thi  

follower-AUV equation of motion, and [ ]0iD I= , 

[ ]0iE I= −  due to the formation error relationship. 

The main objective of leader-follower formation is that all 

the follower-AUVs and the leader-AUV keep a prescribed 

distance to their neighbors and move in a common direction. 

In order to design the decentralized control, we introduce the 

augmented state vector 

0

0
,i

i

i

x
y

x x y
y

e

 
  = =   
   

                            (3) 

Then, the augmented system is 

( ) ( ) ( ), ( ) ( )x t Ax t B t y t Cx tγ τ= + − =&         (4) 

where 

0 0

0

0 0 0
0 0

0 0 , 0 ,
0 0

0 0 0

i i

i

i i

A B
C

A A B B C
C

D E

   
    = = =     
       

 (5) 

The initial condition is (0)x . The triple ( , , )A B C  is 

controllable-observable.  

By using the functional transformation  

( )( ) ( ) e ( )d
t

A t h

t
z t x t Bu h h

τ

−

−
= +                       (6-1) 

( )( ) ( ) e ( )d
t

A t h

t
t y t C Bu h h

τ
η −

−
= +                      (6-2) 

with the initial condition (0) (0)z x= , the control-delay 

system (4) is converted into the equivalent delay-free one, that 

is, 

( ) ( ) ( ), ( ) ( )z t Az t B t t Cz tγ η= + =&               (7) 

where e A
B B

τ−= . It is easily proved that ( , )A B  is 

controllable. 

Note that, an optimal control for system (7) will not only 

stabilize the formation error but also minimize the control 

power consumption. Thus the tradeoff between system states 

and control input are selected in the performance index. 

Consider the following average performance index 

T T

0

1
lim ( ) ( ) ( ) ( )

T

T
J z t Qz t t R t

T
γ γ

→∞
 = +             (8) 

where Q  is a positive semi-definite matrix, R  is a positive 

definite one, and T  is the terminal time. Our purpose is to 

design the optimal control subject to constrain (7) and 

performance index (8). 

III. CONTROLLER DESIGN 

According to the Pontryagin Maximum Principle, the 

optimal control problem consisting of the system (7) with the 

performance index (8) follows two-point boundary value 

problem: 
1 T T

( ) ( ) ( ), ( ) ( ) ( )z t Az t BR B P t t Qz t A tλ λ λ−= − = − −&&   (9)                     

with the two-point values (0)z  and ( ) 0λ ∞ = . The 

optimized control law is  
1 T( ) ( )t R B tγ λ∗ −= −                          (10) 

The main result of this paper is demonstrated as follows. 

Theorem 1. Consider the leader-follower-AUV system (1) 

with respect to the performance index (8). There exists the 

unique optimal control given by 

( )1 T ( )
( ) ( ) e ( )d

t
A t h

t
t R B P x t Bu h h

τ
γ ∗ − −

−
= − +         (11) 

where P  is the unique positive definite solution of Riccati 

equation 
T 1 T 0A P PA PBR B P Q

−+ − + =                   (12) 

and the minimal performance index is T

min (0) (0)J z Pz= . 

Proof. Let the costate vector  

( ) ( )t Pz tλ =                                (13) 

where P  is a matrix to be decided. Differentiating both sides 

of it yields  

( ) ( )t Pz tλ =& &                                (14) 

Substituting (9-1) into the right side of (14) with (13) yields 
1 T( ) ( ) ( )t PA PBR B P z tλ −= −&                    (15) 

Furthermore, substituting (13) into (9-2) yields 
T( ) ( ) ( )t Q A P z tλ = − +&                         (16) 

The identity of Eqs. (15) and (16) produces the Riccati 

equation (12). Substituting (13) and (6-1) into (10) yields the 

optimal control (11), where P  is the solution of Riccati 

equation (12). Since the triple ( , , )A B C  is 

controllable-observable, according to optimal theory, the 

solution P  of the Riccati equation (12) is unique [13]. 

Moreover, the closed-loop matrix 1 TA BR B P−−  is Hurwitz. 

Therefore, the state ( )z t  of the closed-loop system (7) under 

the optimal control 1 T( ) ( )t R B Pz tγ ∗ −= −  is exponentially 

stable. From the relationship (6-1) it can be obviously seen 

that the state ( )x t  is exponentially stable under the optimal 
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control (11), which implies that lim ( ) 0t ie t→∞ =  

( 1,2, , )i k= L   holds for formation errors. The proof of 

Theorem 1 is completed.   

The algorithm of optimal control design for the system (1) 

is schemed out as follows: 

Algorithm 1 Optimal Control Design for system (1): 

Step 1: Determine the matrices in (5); 

Step 2: Judge the controllability-observability of ( , , )A B C ; 

Step 3: Solve the matrix P  from Eq. (12); 

Step 4: Compute optimal control ( )u t
∗  of (11); 

Step 5: Calculate the minimal performance index 
minJ . 

IV. APPLICATION WITH AUV 

The simulation is conducted by using a leader and two 

followers of 3DOF AUV model. The state vectors are defined 

by 

0 1 2

0 1 2

01 11

0 0 1 2 0 11 2

02 12

0 1 2

0 1 2

21

2 1 0 1 2 0 2

22

, , , ,

, ,

u u u

v v v

x r x xr r

d d d

e d d e d d

γ γ
γ γ

γ γ
θ θ θ

γ
γ

γ

     
     
         
     = = = =   
        
     
         

 
= = − = − 
 

=

 

and the associated matrices are given by 

[ ]

[ ] [ ]

0 1 2

0 1 2 1 2

1 2 0 1 2

0.37 0 0 0 0

0 2.78 0.63 0 0

0 5 1.97 0 0

0 0 1 0 0

0 1 0 1.5 0

0.03 0

0 0.28

, 1 0 0 0 00 1.60

0 0

0 0

1 0 0 0 0 , 1 0 0 0 0

A A A

B B B D D

E E C C C

− 
 − − 
 = = = − −
 
 
  

 
 
 
 = = = = =−
 
 
  

= = − = = =

 

The parameter denotations are listed in Table I [12], [14]. 
TABLE I: Parameter Denotations 

Parameter Denotation 

u  
forward velocity of AUV in body fixed 

coordinate (m/sec)  

v  
lateral velocity of AUV in body fixed 

coordinate (m/sec) 

r  yaw rate (rad/sec) 

θ  yaw angle (rad) 

d  perpendicular distance from the path (m) 

1 ( 0,1,2)i iγ =

 
propeller thrust force (N) 

2 ( 0,1,2)i iγ = rudder angle (rad) 

 

 

Therefore, the augmented system (3)-(5) is performed. Take 

the control delay 0.1sτ = ,  and the weight matrices and the 

initial states as follows: 

diag(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), diag(1,1,1,1,1,1)

(0) (0.2,0.2,0.2,0.2,0.2,0.1,0.1,0.1,0.1,0.1,0.1,

0.1, 0.1, 0.1, 0.1, 0.1, 0.1)

Q R

x

= =

=

− − − − − −

 

The matrix   

0 1 2

0.0311 0

0 0.2469

0 1.8015

0 0.1696

0 0.0390

B B B

 
 
 
 = = = −
 
 
 − 

 

Calculate the gain matrix of the optimal control (11) as 

1 T

2.7347 0 0 0 0 1.3463 0 0 0 0 0.5774 1.3463 0 0 0 1 0.5774

0 1.4927 1.6202 3.2100 1 0 0 0 0 0 0 0 0 0 0 0 0

1.3463 0 0 0 0 1.9452 0 0 0 0 0.7887 0.5569 0 0 0 0 0.2113

0 0 0 0 0 0 1.4927 1.6202 3.21 1 0 0 0 0 0 0 0

1.3463 0 0 0 0 0.5569 0 0 0 0 0.2113 1.9452 0 0 0 0 0

R B P
−

− − −

−

− −
− =

−

− − .7887

0 0 0 0 0 0 0 0 0 0 0 0 1.4927 1.6202 3.21 0 0

 
 
 
 
 
 
 
 
 − 

 

The simulation is conducted by exploiting Matlab 

programming. As shown in Fig. 2, the state trajectories of 

leader and followers converged and the formation error 

approached to zero. It shows that under the decentralized 

optimal control (11), the follower-AUVs followed the 

leader-AUV keeping the prescribed distance and move in a 

common direction. Moreover, the control-delay is 

compensated completely by the integral term in the controller. 

Fig. 3 displays the moving trajectories of the leader and two 

followers, where the desired distance was set to 10m in 

x-direction and the followers were separated by 40m to the 

leader. Although the AUVs were started from random initial 

positions, they converged to the assigned formation 

trajectories and maintain mutually the prescribed distances. 

Even there were control delays between the 

controller-actuator channels, because of the compensation for 

control delay in the designed controllers, the formation was 

still accomplished satisfactorily. 
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Fig. 2. The state trajectories of the leader and follower AUVs. 
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Fig. 3. The leader-follower AUVs moving trajectories. 

V. CONCLUSION 

In this paper, the optimal control design for decentralized 

formation control has been proposed. The leader-AUV and 

follower-AUV systems with control delays are modeled. The 

augmented system is constructed by defining augmented 

states. Via a functional transformation, the control-delay 

system is converted into an equivalent delay-free one. After 

solving a Riccati equation, the optimal decentralized control 

is obtained. The influence produced by control delay is 

compensated by an integral term of past-time controls, which 

can be easily obtained from computer memories. In 

simulation, by employing the designed controllers, the 

follower-AUV follows the leader-AUV satisfactorily after a 

short regulation period. The effectiveness and the simplicity 

of the proposed decentralized controllers are validated by 

simulation. 
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