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Abstract—The paper addresses the problem of 

synchronization control design for chaotic Lorenz systems, 

where external disturbance and controller-actuator time delay 

are encountered. To solve the control-delay problem, a 

functional transformation method is proposed, by using which 

the control-delay synchronization error system is converted into 

an equivalent delay-free one, so that the linear part of the 

controllers can be designed by using traditional methods, e.g. 

optimal control. As for the external disturbance that the system 

undertakes, a feedforward term is designed in the controller to 

compensate for the influence produced by disturbance. The 

nonlinearity in error system is accurately cancelled by using 

feedback linearization. After solving a Riccati equation and a 

Sylvester equation, the nonlinear control consisting of optimal 

control term, feedforward term, and the feedback linearization 

term is constructed. The input-to-state stability of the 

closed-loop system of synchronization error is demonstrated. By 

using the proposed approach, the nonlinear synchronization 

controller is designed for chaotic Lorenz system. The 

effectiveness of the designed controller is validated by 

simulation. 

 
Index Terms—Chaos synchronization, disturbance, Lorenz, 

simulation.  

I. INTRODUCTION 

Chaos synchronization control has been widely applied in 

circuit [1], Bistatic Radar [2], modem [3], bidirectional 

communicator [4], semiconductor laser [5], wireless networks 

[6], etc. Till now, a successful application of chaos 

synchronization is at secure communications [7]. 

Synchronization control for chaotic Lorenz systems has been 

studied with many strategies, such as active feedback control 

[8], adaptive control [9], sliding model [10], backstepping 

[11], and observer-based dynamical control [12]. As known 

to all, time delay occurs frequently over wired and/or wireless 

networks. Network-induced delays are also unavoidable for 

chaotic synchronization networks [13]-[15]. Due to the 

complexity of functional differential equation for time-delay 

systems, time-delay issue is still open. External disturbance 

against model enhances the complexity of a chaotic 

synchronization system with control delay. 

   This paper investigates into synchronization control 

design for chaotic Lorenz system, where control delay 

between controller and actuator channel and the disturbance 

undertaken by the drive system are considered. To reduce 

calculation complexity, we transform the input-delay 

synchronization error system to an equivalent system without 

delay by using model reduction method [16]-[17]. Hence, the 

traditional methods for designing controllers can be 

employed. To compensate for the delay influence to the 

system, an integral term consisting of past-time control 

information are added in the control. LQR method is 

employed to design the linear part control and feedback 

linearization is adopted to design the nonlinear part so as to 

accurately cancel the nonlinearity. The input-to-state stability 

of the closed-loop system of synchronization error is proved 

according to Lyapunov theory. In the simulation, the 

proposed method is applied to design the controllers for 

chaotic Lorenz system. Simulation results show that the 

designed controllers are effective to guarantee the response 

system synchronously tracking the drive system, as we as it 

illustrates that and the proposed method is feasible.  

The paper is organized as follows. After an introduction, in 

Section II, the system description and problem formulation 

are presented. In section III, the nonlinear control design 

problem for the synchronization error system is solved. As a 

consequence, the stability of synchronization error is proved. 

In order to verify the effectiveness of the proposed approach, 

numerical simulation is conducted in Section IV. Concluding 

remarks are given in Section V. 

II. SYSTEM DESCRIPTION 

Consider a chaotic synchronization system given by the 

drive system 

0

( ) ( ) ( ) ( )

(0)

x t Ax t f x Dd t

x x

= + +

=

&
                     (1) 

and the response system 

0

0

( ) ( ) ( ) ( )

(0)

s s s

s s

x t Ax t B u t f x

x x

τ= + − +

=

&
                  (2) 

where : n n
f R R→  is a continuous nonlinear functional 

vector, , n

sx x R∈  are the state vectors, n
u R∈  is the control 

input vector to ensure the response system tracking the drive 

one, d R∈  is an external disturbance that the drive system 

undertakes, and 0τ >  is a known constant delay between the 

controller and actuator. The matrices n n
A R

×∈ , 0

n n
B R

×∈ , 

and nD R∈  are constant and the pair 
0( , )A B  is controllable. 
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There are many chaotic systems, for example, Lorenz 

attractor, Rossler&& system, Chua’s circuit and Chua’s circuit 

family, which can be described in form of (1). The 

disturbance is generated from an exosystem 

( ) ( )

( ) ( )

w t Gw t

d t Fw t

=

=

&
                              (3) 

where m m
G R

×∈ , 1 mF R ×∈ , m
w R∈  is the state vector of 

disturbance. 

Assumption 1. The nonlinear function f  satisfies Lipschitz 

condition with (0) 0f = .  

Remark 1. Since attractors of chaotic systems are bounded, 

most of chaotic functions assumed satisfying Assumption 1, 

such as Lorenz, Rossler&& , Chua’s circuit [18]. 

III. CONTROL DESIGN 

Let the synchronization error be ( ) ( ) ( )
s

e t x t x t= − . 

Differentiating both sides of the error equality and 

substituting the system (1) and (2) into the result, respectively, 

yield the error equation 

0

0

( ) ( ) ( ) ( ) ( ) ( )

(0)

s
e t Ae t B u t f x f x Dd t

e e

τ= + − + − −

=

&
        (4) 

The solution of (4) is 

[ ]( )

0 0
0

( ) e e ( ) ( ) ( ) ( ) d
t

At A t h

s
e t e B u h f x f x Dd h hτ−= + − + − −         

(5) 

Let s h τ= − . The integral interval becomes [ , ]tτ τ− −  and 

d ds h= . Replacing t τ−  in (4) by s  deduces  

[ ]
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           (6) 

with the reason that ( ) 0u t ≡  when [ ,0)t τ∈ − . Define 

0e A
B B

τ−=  and a new variable  

( )( ) ( ) e ( )d
t

A t s

t
z t e t Bu s s

τ

−

−
= +                      (7) 

From (6), (0) (0)z e= . Taking (7) into (6) yields 

[ ]( )

0

( ) e (0)

e ( ) ( ) ( ) ( ) d

At

t
A t s

s

z t z

Bu s f x f x Dd s s−

=

+ + − −
    (8) 

Apparently, (8) is the solution of the differential equation  

0

( ) ( ) ( ) ( , ) ( )

(0)

s
z t Az t Bu t x x Dd t

z z

= + + Φ −

=

&
            (9) 

where  

1

2

3

( , )

( , ) ( , ) ( ) ( )

( , )

s

s s s

s

x x

x x x x f x f x

x x

ψ

ψ

ψ

 
 Φ = − 
  

@  

The delay-free system (9) is equivalent to the control-delay 

system (4) [16]-[17]. Therefore, the control-delay system (4) 

is converted into its equivalent delay-free on (9). Now, our 

aim is to design a controller to guarantee the stability of 

synchronization error. 

Theorem 1. Consider the chaotic drive system (1) and the 

response system (2). Then, under the nonlinear control  
T T 1

1( ) ( ) ( ) ( , )su t B Pz t B Pd t B x x
−= − − − Φ            (10) 

where P  is positive definite and unique solution of the 

following Riccati equation  
T T 0A P PA PBB P Q+ − + =                     (11) 

1P  is the solution of the following Sylvester equation 

T T

1 1( ) 0A BB P P PG PDF− + − =                (12) 

Q  is a positive semi-definite matric, the synchronization 

errors is asymptotically stable.  

Proof. Denote the control (10) as  
1( ) ( ) ( , )su t u t B x x

−= − Φ%                     (13) 

where T T

1( ) ( ) ( )u t B Pz t B Pd t= − −% . Then, substituting (13) 

into the error system (9) yields the closed-loop error system  

( )1

1

( ) ( ) ( ) ( , ) ( , ) ( )

( ) ( ) ( , ) ( , ) ( )

( ) ( ) ( )

s s

s s

z t Az t B u t B x x x x Dd t

Az t Bu t BB x x x x Dd t

Az t Bu t Dd t

−

−

= + − Φ + Φ −

= + − Φ + Φ −

= + −

%&

%

%

  (14) 

According to Maximum Value Principle, the LQR problem of 

system (14) leads to the following two-point boundary value 

problem 
T( ) ( ) ( ) ( )z t Az t BB t Dd tλ= − −&                 (15-1) 

T
( ) ( ) ( )t Qz t A tλ λ= − −&                        (15-2) 

with the boundary values 
0(0)z z=  and ( ) 0λ ∞ = , where  

1( ) ( ) ( )t Pz t Pw tλ = +                           (16) 

is the costate vector, Q  is the weight matrix from the 

performance index, and the optimal control is 
T T

1( ) ( ) ( )u t B Pz t B Pw t= − −%  in which P  and 1P  are to be 

specified. Differentiating both sides of (16) and substituting 

(15-1) and (3) into the result yield  
T T

1 1( ) ( ) ( ) ( ) ( )t PA PBB P z t PDF PG PBB P w tλ = − − − +&  (17) 

Substituting (16) into (15-2) yields 
T T

1( ) ( ) ( ) ( )t Q A P z t A Pw tλ = − + −&               (18) 

The eventual identity of the equalities (17) and (18) results in 

the Riccati equation (11) and the Sylvester equation (12), 

from which the matrices P  and 
1P  are now solvable. 

According to LQR theory, the solution P  of the Riccati 

equation (11) is unique and the closed-loop matrix 
TA BB P−  is Hurwitz. Therefore, the optimal control 
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T T

1( ) ( ) ( )u t B Pz t B Pw t= − −%  is obtained and so does the 

nonlinear control (10). Now, we check the stability property 

of the closed-loop system (9) under (10).  

Denote a Lyapunov function candidate T( )V z z Pz= . The 

derivative of the Lyapunov function along the closed-loop 

system (9) under (10) deduces 
T T

T T T T

T T T T T

1

( ) ( )

2 ( )

V z Pz z Pz

z A BB P P A BB P z

w P BB P F D P z

= +

 = − + − 

− +

& & &

         (19) 

Since T
A BB P−  is Hurwitz, from Lyapunov theory, there is 

a symmetric matrix 
1Q  that satisfies 

T T T

1( ) ( )=A BB P P A BB P Q− + − − . 

Meanwhile, from (12), it yields 
T T T T T T T

1 1 1P BB P F D P P A G P+ = +  

Hence, the (19) deduces 
T T T T T

1 1 1

2 T T T1 1
1 1 1 12 2

21
12

2 ( )

2

V z Q z w P A G P z

Q z Q z P A G P w z

Q z

= − − +

 ≤ − − − + 

≤ −

&

 

 for  T T T

1 1 14z P A G P w Q≥ + . According to control 

theory, the closed-loop system of (9) under (10) is 

input-to-state stable, which implies that whether the 

closed-loop of (9) is exponential stable or ultimate bounded 

depends on the property of disturbance ( )d t . In other words, 

when the disturbance is periodical signal, the closed-loop 

system of (9) under control (10) is input-to-state stable. And 

when the disturbance is attenuated signal, the closed-loop 

system of (9) under control (10) is exponentially stable. 

Namely, as t → ∞ , ( ) 0z t → . From (7), apparently, 

( ) 0e t →  as t → ∞ . The proof is completed. 

Now we apply the abovementioned procedure into the 

chaotic Lorenz system, given by 

1 1 2

2 1 2 1 3

3 3 1 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x t ax t ax t d t

x t cx t x t x t x t

x t bx t x t x t

= − + +

= − −

= − +

&

&

&

                   (20) 

with 10, 8 3, 28a b c= = = , where there is a chaotic attractor. 

The controlled response system is given by 

1 1 2 1

2 1 2 1 3 2

3 3 1 2 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

s s s

s s s s s

s s s s

x t ax t ax t u t

x t cx t x t x t x t u t

x t bx t x t x t u t

τ

τ

τ

= − + + −

= − − + −

= − + + −

&

&

&

     (21) 

Subtracting (21) from (20) yields the synchronization error 

system 

1 1 2 1

2 1 2 1 3 1 3 2

3 3 1 2 1 2 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

s s

s s

e t ae t ae t u t

e t ce t e t x t x t x t x t u t

e t be t x t x t x t x t u t

τ

τ

τ

= − + + −

= − − + + −

= − + − + −

&

&

&

(22) 

It can be observed that the system (22) is the system (4) with 

the matrices and the vectors as follows 

0

1

2 1 3 1 3

3 1 2 1 2

0 1 0 0

= 1 0 , 0 1 0

0 0 0 1

0

, ( , ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

s s s

s s

a a

A c B

b

u

u u x x x t x t x t x t

u x t x t x t x t

−   
   − =   
   −   

   
   = Φ = − +   
   −   

 

Notice that there is a known constant control delay τ  

existing between the controller and actuator. Through the 

functional transformation (7), the control-delay system (22) is 

converted into the equivalent delay-free one 

1 1 2 11 1 12 2 13 3

2 1 2 1 3 1 3 21 1

22 2 23 3

3 3 1 2 1 2 31 1

32 2 33 3

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

s s

s s

z t az t az t b u t b u t b u t

z t cz t z t x t x t x t x t b u t

b u t b u t

z t bz t x t x t x t x t b u t

b u t b u t

= − + + + +

= − − + +

+ +

= − + − +

+ +

&

&

&

  (23) 

where  

11 12 13

21 22 23

31 32 33

b b b

B b b b

b b b

 
 =  
  

 

Notice that the matrix B  depends on the value of control 

delay τ . Let the control 

 

1

T T

2 1

3

1 3 1 3

1 2 1 2

( )

( ) ( ) ( )

( )

0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

s s

s s

z t

u t B P z t B Pw t

z t

x t x t x t x t

x t x t x t x t

 
 = − − 
  

 
 − − 
 − + 

          (24) 

in which P  is solved from the Riccati equation (11) taking 

Q I=  and 
1P  is solved from the Sylvester equation (12). 

Therefore, according to Theorem 1, the exponential stability 

of the synchronization error is guaranteed. 

IV. SIMULATION 

In simulation, we will verify the correctness of the designed 

controllers and the effectiveness of the proposed approach. 

Take the parameter values as 10, 8 3, 28a b c= = =  in 

Lorenz system (20). The Lorenz chaos are illustrated in Fig. 1. 
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Fig. 1. The chaotic Lorenz. 

Take the control delay 0.01sτ =  in the synchronization 

system (21). Then, we get the synchronization error system 

(22). Transform the control-delay system (22) into delay-free 

one (23). The controllers is designed as (24), where the 

matrices values are as follows: 

1

1.1202 0.1062 0

0.2973 1.0247 0

0 0 1.0270

18.6785 14.5585 0

14.5585 11.3825 0

0 0 0.1810

1.4494 1.3401 0

1.1291 1.0454 0

0 0 0.0974

B

P

P

− 
 = − 
  

 
 =  
  

− − 
 = − − 
 − 

 

Thus, the controller (24) is 

1

2

3

1

2

3

1 3 1 3

1 2 1 2

16.5956 12.9246 0 ( )

( ) 12.9342 10.1173 0 ( )

0 0 0.1859 ( )

1.288 1.1904 0 ( )

1.003 0.9289 0 ( )

0 0 0.1001 ( )

0

( ) ( ) ( ) ( )

( ) ( ) ( ) (

s s

s s

z t

u t z t

z t

w t

w t

w t

x t x t x t x t

x t x t x t x t

   
   = −    
      

− −   
   − − −   
   −   

− −

− + )

 
 
 
  

 

We perform the simulation with an attenuated disturbance 

1( ) exp( )w t t= −  and 
2 3( ) ( ) 0w t w t= =  with 

diag( 1,1,1)G = −  and 
3F D I= = . The simulation is 

conducted in Matlab. The initial states are set as  

( )1 2 3 1 2 3(0), (0), (0), (0), (0), (0) (0,0.1,0.1,0,0,0.1)
s s s

x x x x x x =

 

The synchronized states of chaotic Lorenz system are 

shown in Fig. 2. The synchronization errors are shown in Fig. 

3, which are observed convergent to zeroes at about 2sec. It 

shows that the designed controllers ensure the response 

system tracks the Lorenz system synchronously. 
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Fig. 2. Synchronized chaotic Lorenz. 
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Fig. 3. Synchronization errors. 

V. CONCLUSION 

The paper designs the synchronization controllers for 

chaotic Lorenz systems in the presence of a control delay and 

an external disturbance. It presented a functional 

transformation method so that the control-delay 

synchronization error system was converted into an 

equivalent delay-free system. The control was easily 

designed, which was combined by a linear part using LQR 

method, a feedforward term compensating for the influence 

produced by disturbance, and an accurate nonlinear term 

cancelling the nonlinearity exactly. The effectiveness and 

feasibility of the proposed method and the controllers are 

validated by the simulation.  
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