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Abstract—In this paper, we present a new class of third-order 

iterative methods, which are variants of the Newton’s method. 

In contrast to the Newton’s method, the presented methods are 

more effective and numerical examples are given to show the 

efficiency. 
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I. INTRODUCTION 

We consider the iterative methods for finding a simple root 

α of a nonlinear equation ( ) 0f x = , where :f I R R⊆ →  

for an open interval I is a scalar function. The well-known and 

widely used method is the classical Newton’s method 
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which converges quadratically in some neighborhood of .α  

In recent years, many modifications of Newton’s method 

with at least cubic convergence have been proposed, 

see[1-14]and references therein. Many numerical 

applications use high precision in their computation, so 

higher-order numerical methods are important[15]. In this 

paper, we first present a new class of iterative methods with 

third-order convergence. Then, numerical examples are given 

to show the performance. 

II. CONVERGENCE ANALYSIS 

Now, we consider the iteration scheme 
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which is a variant of the Newton’s method and where C is an 

arbitrary constant. 

Theorem  Let α  be a simple zero of sufficiently 

differentiable function :f I R R⊆ →  for an open interval I. 

If 
0x  is sufficiently close to α , then the method defined by 

(2) is of third-order and satisfies the error equation 
3 4
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n n

e x α= −   and ( )
( ) / ! '( )
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Proof  Using Taylor expansion, we have 
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Furthermore, we can get 
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From (5,7,8), we obtain 
3 4

1 ( 2) ( )
n n n

e C e O e
+

= − + + . 

This means the method defined by (2) is of third-order. That 

completes the proof. 

Especially, if 2C = − , we obtain a fourth-order method 
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which is the Ostrowski’s method. 

III. NUMERICAL EXAMPLES 

In this section, we employ the new methods defined by (2) 

to solve some nonlinear equations and compare them with 

Newton’s method (NM). C is an arbitrary constant and here 

wo let 3 / 2C = − . Displayed in Table I are the number of 

iterations (IT) and the number of function evaluations (NFE) 

required such that 15( ) 10
n

f x
−

< . 

We use the following functions: 
3 2

1 ( ) 4 10f x x x= + − , 

1.36523001341409688791373α = , 
5 4 2

2 ( ) 4 20f x x x x= + + − , 

1.46627907386472267070587α = , 
3

3 ( )
x

f x x e
−

= − , 

0.772882959149210124749629α = , 
2

4 ( ) sin ln( 1)x
f x e x x= + + , 

0α = . 
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The computational results presented in Table 1 show that, 

the presented methods converge more rapidly than Newton’s 

method and require the less NFE. Therefore, the new methods 

(2) have better convergence efficiency. 

 

Table I: Comparison of various iterative methods 

  
IT(NM

) 
NFE(NM) 

IT(Eq.(2)

) 

NFE(Eq.(2)

) 

 

-1 24 48 19 57 

1 5 10 3 9 

2 5 10 3 9 

 

0.5 10 20 4 12 

1.2 5 10 3 9 

2 6 12 4 12 

3 ( )f x  

0 6 12 4 12 

0.5 5 10 3 9 

-0.5 7 14 4 12 

4 ( )f x  

-1 8 16 3 9 

0.5 7 14 4 12 

2 7 14 4 12 
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