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ABSTRACT: Map Reduce has become a major 

computing model for data intensive applications. 

Hadoop, an open source implementation of Map 

Reduce, has been adopted by an increasingly growing 

user community. Cloud computing service providers 

such as Amazon EC2 Cloud offer the opportunities 

for Hadoop users to lease a certain amount of 

resources and pay for their use. However, a key 

challenge is that cloud service providers do not have 

a resource provisioning mechanism to satisfy user 

jobs with deadline requirements. Currently, it is 

solely the user’s responsibility to estimate the 

required amount of resources for running a job in the 

cloud. This work presents a Hadoop job performance 

model that accurately estimates job completion time 

and further provisions the required amount of 

resources for a job to be completed within a deadline. 

The proposed model builds on historical job 

execution records and employs Locally Weighted 

Linear Regression (LWLR) technique to estimate the 

execution time of a job. Furthermore, it employs 

Lagrange Multipliers technique for resource 

provisioning to satisfy jobs with deadline 

requirements.  

1. INTRODUCTION 

Many organizations are continuously collecting 

massive amounts of datasets from various sources 

such as the World Wide Web, sensor networks and 

social networks. The ability to perform scalable and 

timely analytics on these unstructured datasets is a 

high priority task for many enterprises. It has become 

difficult for traditional network storage and database 

systems to process these continuously growing 

datasets. MapReduce, originally developed by 

Google, has become a major computing model in 

support of data intensive applications. It is a highly 

scalable, fault-tolerant and data parallel model that 

automatically distributes the data and parallelizes the 

computation across a cluster of computers. Among its 

implementations such as Mars, Phoenix, Dryad and 

Hadoop, Hadoop has received a wide uptake by the 

community due to its open source nature. Building on 

the HP model, this system presents an improved HP 

model for Hadoop job execution estimation and 

resource provisioning. The major objectives of the 

system are as follows:  

• The improved HP work mathematically models 

all the three core phases of a Hadoop job. In 

contrast, the HP work does not mathematically 

model the non-overlapping shuffle phase in the 

first wave. 

• The improved HP model employs locally 

weighted linear regression (LWLR) technique to 

estimate the execution time of a Hadoop job with 

a varied number of reduce tasks. In contrast, the 

HP model employs a simple linear regress 

technique for job execution estimation which 

restricts to a constant number of reduce tasks. 
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• Based on job execution estimation, the improved 

HP model employs Lagrange Multiplier 

technique to provision the amount of resources 

for a Hadoop job to complete within a given 

deadline. 

2. LITERATURE SURVEY 

A. DYNAMIC SLOT ALLOCATION 

TECHNIQUE 

Dynamic Hadoop Fair Scheduler(DHFS) 

It schedules the job in order manner, it has pool-

independent DHFS(PI-DHFS) and pool-dependent 

DHFS(PD-DHFS).Pool dependent DHFS have each 

pool which satisfy only its own map and reduce tasks 

with its shared map and reduce slots between its map-

phased pool and reduce-phased pool,it is known to be 

intra pool dynamic slots allocation. Pool independent 

DHFS considers the dynamic slots allocation from 

the cluster level itself, instead of pool-level. The map 

tasks have priority in the use of map slots and reduce 

tasks have priority to reduce slots are called as intra 

phase dynamic slots allocation. When the respective 

phase slots requirements met excess slots be used by 

other phase are referred as inter phase dynamic slots 

allocation. 

Dynamic slot allocation 

It is a technique for managing global session 

resources and it allows dynamic resizing of the cache 

per-client, per-load basis. The client communicates to 

the server about whether resources are filled in all 

slots or not filled in the slots. The server then decides 

how many slots it should allocate to that client in the 

future. Communication occurs via the sequence 

operation, which means that updates occur on every 

step. 

Process of Hadoop Fair Scheduler 

It runs small jobs quickly, even if they are sharing a 

cluster with large jobs. The users should only need to 

configure, it support reconfigure at runtime without 

requiring a cluster restart. Fair scheduling is a method 

of assigning resources to jobs. When there is a single 

job running, that job uses the entire cluster. When 

other jobs are submitted, tasks slots that free up are 

assigned to the new jobs, so that each job gets 

roughly the same amount of CPU time. 

B. JOB SCHEDULING FOR MULTI-USER 

MAPREDUCE CLUSTERS 

Job scheduling process 

Job scheduling in Hadoop is performed by the job 

master,which manages a number of worker nodes in 

the cluster. Each worker has a fixed number of map 

and reduce slots,which can run tasks.The workers 

periodically send heartbeats to the master to reporting 

the number of free slots and tasks. The objective of 

scheduling is to determine the job schedules that 

minimize or maximize a measure of performance. It 

can be characterized by a set of jobs, each with one 

or more operations. 

Multi user cluster scheduling 

The jobs are composed of small independent tasks,it 

is possible to isolate while using cluster 

efficiently. The steps in multi user cluster scheduling 

are to make tasks small in length having small tasks 

make other new jobs to startup quickly. 

Delay scheduling 
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The job which is to be scheduled next, should wait 

for the previous job to be completed. After 

completion of the previous job,the current job should 

be processed and delay occurs. This type of job 

scheduling are known as delay scheduling. 

Copy compute splitting 

HDFS copy tasks that because they perform large 

amounts of memory copies when merging map 

outputs, there is little gain from copy-compute (copy 

tasks compete with compute tasks with CPU). 

2.1 EXISTING SYSTEM 

Meeting job deadlines is difficult in current Hadoop 

platforms. First, because jobs have diverse resource 

demands, it is hard to determine how much resource 

is needed for each job to avoid its deadline miss. 

Second, Hadoop clusters are usually shared by 

multiple jobs and the scheduling order of these jobs 

can affect job completion time]. Thus, allocating 

sufficient resources alone may not guarantee job 

completion time effectively. While existing 

schedulers in Hadoop, such as the default FIFO 

scheduler, Fair scheduler, Capacity scheduler, the 

RAS scheduler, and their variations, optimize job 

completion time without considering deadlines. 

2.1.1 DISADVANTAGES 

• Current use of Hadoop in research and enterprises 

still has significant room for improvement on the 

performance of Hadoop jobs and the utilization of 

Hadoop clusters. There is a growing need for 

providing predictable services to Hadoop users who 

have strict requirements on job completion times 

(i.e., deadlines). 

• Does not consider the mapping between VM’s 

and hosts. I.e no load balancing is done. 

• Longer jobs always tend to get pushed back, as 

shorter jobs get priority. 

• It uses static allocation. Does not consider 

dynamic allocation 

2.2 PROPOSED SYSTEM 

MapReduce has become a major computing model 

for data intensive applications. Hadoop, an open 

source implementation of MapReduce, has been 

adopted by an increasingly growing user community. 

Cloud computing service providers such as Amazon 

EC2 Cloud offer the opportunities for Hadoop users 

to lease a certain amount of resources and pay for 

their use. However, a key challenge is that cloud 

service providers do not have a resource provisioning 

mechanism to satisfy user jobs with deadline 

requirements. Currently, it is solely the user’s 

responsibility to estimate the required amount of 

resources for running a job in the cloud. The 

proposed system presents a Hadoop job performance 

model that accurately estimates job completion time 

and further provisions the required amount of 

resources for a job to be completed within a deadline. 

The proposed model builds on historical job 

execution records and employs Locally Weighted 

Linear Regression (LWLR) technique to estimate the 

execution time of a job. Furthermore, it employs 

Lagrange Multipliers technique for resource 

provisioning to satisfy jobs with deadline 

requirements. 

2.2.1 BENFITS OF PROPOSED SYSTEM 
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• The improved HP work mathematically models all 

the three core phases of a Hadoop job. In contrast, the 

HP work does not mathematically model the non-

overlapping shuffle phase in the first wave.  

• The improved HP model employs Locally Weighted 

Linear Regression (LWLR) technique to estimate the 

execution time of a Hadoop job with a varied number 

of reduce tasks. In contrast, the HP model employs a 

simple linear regress technique for job execution 

estimation which restricts to a constant number of 

reduce tasks.  

• Based on job execution estimation, the improved HP 

model employs Langrage Multiplier technique to 

provision the amount of resources for a Hadoop job 

to complete within a given deadline. 

3. SYSTEM DESCRIPTION 

Recently, a number of sophisticated Hadoop 

performance models are proposed. Starfish collects a 

running Hadoop job profile at a fine granularity with 

detailed information for job estimation and 

optimization. On the top of Starfish, Elasticiser is 

proposed for resource provisioning in terms of virtual 

machines. However, collecting the detailed execution 

profile of a Hadoop job incurs a high overhead which 

leads to an overestimatedjob execution time. The HP 

model considers both the overlapping and non-

overlapping stages and uses simple linear regression 

for job estimation. This model also estimates the 

amount of resources for jobs with deadline 

requirements. CRESP estimates job execution and 

supports resource provisioning in terms of map and 

reduce slots. However, both the HP model and 

CRESP ignore the impact of the number of reduce 

tasks on job performance. The HP model is restricted 

to a constant number of reduce tasks, whereas 

CRESP only considers a single wave of the reduce 

phase. In CRESP, the number of reduce tasks has to 

be equal to number of reduce slots. It is unrealistic to 

configure either the same number of reduce tasks or 

the single wave of the reduce phase for all the jobs. It 

can be argued that in practice, the number of reduce 

tasks varies depending on the size of the input 

dataset, the type of a Hadoop application (e.g., CPU 

intensive, or disk I/O intensive) and user 

requirements. Furthermore, for the reduce phase, 

using multiple waves generates better performance 

than using a single wave especially when Hadoop 

processes a large dataset on a small amount of 

resources. While a single wave reduces the task setup 

overhead, multiple waves improve the utilization of 

the disk I/O. 

Normally a Hadoop job execution is divided into a 

map phase and a reduce phase. The reduce phase 

involves data shuffling, data sorting and user-defined 

reduce functions. Data shuffling and sorting are 

performed simultaneously. Therefore, the reduce 

phase can be further divided into ashuffle (or sort) 

phase and a reduce phase performing userdefined 

functions. As a result, an overall Hadoop job 

execution work flow consists of a map phase, a 

shuffle phase and a reduce phase as shown in Fig. 1. 

Map tasks are executed in map slots at a map phase 

and reduce tasks run in reduce slots at a reduce phase. 

Every task runs in one slot at a time. A slot is 

allocated with a certain amount of resources in terms 

of CPU and RAM. A Hadoop job phase can be 

completed in a single wave or multiple waves. Tasks 

in a wave run in parallel on the assigned slots. 
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Fig. 1. Hadoop job execution flow 

Modeling Map Phase 

In this phase, a Hadoop job reads an input dataset 

from Hadoop distributed file system (HDFS), splits 

the input dataset into data chunks based on a 

specified size and then passes the data chunks to a 

user-define map function. The map function 

processes the data chunks and produces a map output. 

The map output is called intermediate data. 

Modeling Reduce Phase 

In this phase, a job reads the sorted intermediate data 

as input and passes to a user-defined reduce function. 

The reduce function processes the intermediate data 

and produces a final output. In general, the reduce 

output is written back into the HDFS. 

Modeling Shuffle Phase 

In this phase, a Hadoop job fetches the intermediate 

data, sorts it and copies it to one or more reducers. 

The shuffle tasks and sort tasks are performed 

simultaneously, therefore, generally consider them as 

a shuffle phase. 

Hadoop performance modeling has become a 

necessity in estimating the right amount of resources 

for user jobs with deadline requirements. It should be 

pointed out that modeling Hadoop performance is 

challenging because Hadoop jobs normally involve 

multiple processing phases including three core 

phases (i.e. map phase, shuffle phase and reduce 

phase). Moreover, the first wave of the shuffle phase 

is normally processed in parallel with the map phase 

(i.e. overlapping stage) and the other waves of the 

shuffle phase are processed after the map phase is 

completed (i.e. non overlapping stage).  

Objectives:  

1. Offer the opportunities for Hadoop users to lease a 

certain amount of resources and pay for their use.  

2. Provisioning mechanism to satisfy user jobs.  

3. Accurately estimates job completion time and 

further provisions the required amount of resources 

for a job to be completed within a deadline.  

4. Providing accuracy for performance of system. 

The proposed system called Hadoop Performance 

Modeling for Job Optimization. In Proposed System 

it present improved HP model for Hadoop job 

execution estimation and resource provisioning. The 

improved HP work mathematically models all the 

three core phases of a Hadoop job. In contrast, the 

HP work does not mathematically model the non-

overlapping shuffle phase in the first wave. The 

improved HP model employs Locally Weighted 

Linear Regression (LWLR) technique to estimate the 

execution time of a Hadoop job with the varied 

number of reduce tasks. In contrast, the HP model 

employs a simple linear regress technique for job 
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execution estimation which restricts to a constant 

number of reduce tasks. Based on the job execution 

estimation, the improved HP model employs 

Langrage Multiplier technique to provision the 

amount of resources for Hadoop job to complete 

within a given deadline.  

The major contributions of this system are as 

follows:  

1. The improved HP work mathematically models all 

the three core phases of a Hadoop job. In contrast, the 

HP work does not mathematically model the non 

overlapping shuffle phase in the first wave.  

2. The improved HP model employs Locally 

Weighted Linear Regression (LWLR) technique to 

estimate the execution time of a Hadoop job with a 

varied number of reduce tasks. In contrast, the HP 

model employs a simple linear regress technique for 

job execution estimation which restricts to a constant 

number of reduce tasks.  

3. Based on job execution estimation, the improved 

HP model employs Lagrange Multiplier technique to 

provision the amount of resources for a Hadoop job 

to complete within a given deadline. The 

performance of the improved HP model is initially 

evaluated on an in-house Hadoop cluster and 

subsequently on Amazon EC2 Cloud.  

The estimated values of both the shuffle phase and 

the reduce phase are used in the improved HP model 

to estimate the overall execution time of a Hadoop 

job when processing a new input dataset. Figure 

shows the overall architecture of the improved HP 

model, which summarizes the work of the improved 

HP model in job execution estimation. The boxes in 

gray represent the same work presented in the HP 

model. It is worth noting that the improved HP model 

works in an offline mode and estimates the execution 

time of a job based on the job profile. 

 

Fig. 2. System Architecture 

PROPOSED ALGORITHM 

Algorithm 1: Compute VM Load from data nodes  

Input: ith Node input  

Output: Idle or Normal Or Overloaded in percent  

Compute Load (VM id) :  

Weight Degree Inputs: The static parameter comprise 

the number of CPUs, the CPU dispensation speeds, 

the reminiscence size, etc. active parameters are the 

memory consumption ratio, the CPU exploitation 

ratio, the network bandwidth.  

Procedure:  

Step 1: Characterize a load limit set: F= {F1,F2. .Fm} 

with each Fire present the total number of the 

consideration.  

Step 2: Calculate the load capacity as weight Load 

Degree(N)=(∑αi Fi) , Where, i=(1,...,m).  



ISSN (ONLINE): 2454-9762 
ISSN (PRINT): 2454-9762 

Available online at www.ijarmate.com  
                         
                             
         International Journal of Advanced Research in Management, Architecture, Technology and Engineering   
         (IJARMATE) Vol. 3, Special Issue 7, March 2017 

 

All Rights Reserved © 2017 IJARMATE                                                     40 

 

Step 3: Ordinary cloud partition degree from the node 

consignment degree statics as: Load amount avg 

=∑(i=1..n)Load Degree(Ni)  

Step 4: Three height node position are defined Load 

Degree(N)=0 for Inactive.  

- 0 <Load Degree(N)<Load Degree(N) for overfull. 

Load Degree(N)high ≤ Load Degree(N)for 

overloaded. 

Algorithm 2: Equally Spread Current Execution 

Throttled Load balancing Algorithm  

Input: File form user as Fi.  

Output: Equally distributed chunks on data servers  

Step 1: Read Fi from data owner with size  

Step 2: count total number of data nodes Ni  

Step 3: for each(score=read each vm node and call to 

computenode(k)) Read when k==null End for  

Step 4: create data chunks base on server loads score.  

Step 5: save all data on data nodes.  

3.1  MODULE DESCRIPTION 

There are four modules designed to implement the 

project.The four modules are: 

1. Formation of clusters using Hadoop distributed file 

System. 

2. Establishing Mapreduce function for the datasets. 

3. Estimating job Execution Time using LWLR 

4. Resource Provisioning using LMT. 

4. Performance Analysis. 

FORMATION OF CLUSTERS USING HADOOP 

DISTRIBUTED FILE SYSTEM 

Setting up the Hadoop cluster in Hadoop distributed 

file system with the use of data node, name node. 

Secondary name node, job tracker, task tracker to 

perform Hadoop operations using mapreduce 

algorithm. Here individual nodes perform its own 

operations . Data node stores the data in Hadoop file 

system. Name node keeps the directory of all files in 

the file system. Multinode clusters are formed to 

perform the tasks for large datasets. A typical file in 

HDFS is gigabytes to terabytes in size. It should 

support tens of millions of files in a single instance. 

The nodes of clusters are initially formed in this 

module. 

ESTABLISHING MAPREDUCE FUNCTION 

FOR THE DATASETS 

The workload is classified and given to the 

mapreduce framework for MAP and REDUCE 

process. It splits the dataset into individual lines by 

using mapper instances and schedule the jobs 

inaccordance with hadoop cluster 

components.Workload undergoes splitting, shuffling, 

sorting and reducing operations. Mapreduce allows 

for distributed processing of the map and reduction 

operations. Provided that each mapping operation is 

independent of the others, all maps can be performed 

in parallel,it is limited by the number of independent 

data sources . 

The Mapreduce algorithm is a two-step method for 

processing a large amount of data. It process the 

parallel problems across huge datasets. These 

frameworks supports up to petabytes of data. 

Map step: The dataset is given as a client input into 

hadoop distributed file system.Under the map 

process, the given dataset is splitted into individual 

lines or words using mapper instances and an 

intermediate output is obtained by output. 
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Reduce step: Shuffle,sort and reduce are the three 

process to be done in reduce phase. The intermediate 

output obtained in map phase undergoes shuffle, and 

it gets sorted order. At the final phase reduce ,the 

dataset get reduced. Each step starts only after the 

previous step is completed. 

ESTIMATING JOB EXECUTION TIME USING 

LWLR 

LWLR maintains two separate queues for current 

running jobs and waiting jobs. By default, incoming 

jobs enter the waiting queue. The scheduling 

optimizer determines which job is to be moved to the 

running queue based on the solution of the LMT. For 

example, low priority jobs or jobs with distant 

deadlines may not be immediately allocated 

resources by the LMT algorithm, i.e., uj(t) = 0. These 

jobs wait until they receive resource allocation from 

the scheduling optimizer. Since the resource 

allocation is determined once for every control 

interval, it is possible that short jobs whose deadline 

is earlier than the next control interval may miss their 

deadlines due to the late allocation of resources. To 

this end, we provide a fast path for short jobs in the 

job queue management, that is, it immediately moves 

a short job to the running queue. 

 

  

Fuzzy performance model takes allocated resources 

and job size as inputs and generates the estimated job 

completion time as outputs. The model is updated 

periodically based on the measured job progress at 

each control interval.  

RESOURCE PROVISIONING USING LMT 

Resource predictor takes the history information on 

resource availability and predicts the amount of 

available resources for the next few intervals. 

Scheduling optimizer adjusts the number of slots 

allocated to each running job based on an online 

receding horizon control algorithm. However, a job’s 

completion time yj can only be measured when the 

job finishes. It is often too late for the Hadoop 

scheduler to intervene if a job already misses its 

deadline. To this end, break down a job’s execution 

into small intervals and apply calibrated deadlines for 

each interval. Consider a job’s deadline is 100 

minutes away and the execution is divided into 10 

intervals. If the job can finish one  tenth of the total 

work in each interval, it can meet the overall 
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deadline. The Hadoop scheduler can adjust the 

resource allocation if a job’s execution is considered 

slow based on its progress on individual intervals. 

Such a breakdown of job execution also allows the 

scheduler to look forward into future intervals and 

apply optimization considering future resource 

availability. 

PERFORMANCE ANALYSIS THROUGH 

MAKE SPAN AND RESPONSE TIME 

FACTORS 

To identify the performance analysis of the disks 

located in Hadoop distributed file system by 

identifying its computation time and its response 

factors. The analysis dependent on parameters such 

as: dataset size, number of nodes, number of reducers 

and loading overhead. The results indicate strong 

dependence on the amount of reducers and IO 

performance of the cluster, which proves the 

common opinion that Mapreduce is IO bound. These 

results can help to compare performance behavior of 

different languages and serve as a basis for 

understanding the influence of configuration 

parameters on the final performance. 

4. CONCLUSION 

The improved HP model mathematically modeled 

three core phases i.e. map phase, shuffle phase and 

reduce phase included overlapping and 

nonoverlapping stages of a Hadoop job. The 

proposed model employed LWLR to estimates 

execution duration of a job that takes into account a 

varied number of reduce tasks The LWLR model was 

validated through 10-fold cross-validation technique 

and its goodness of fit was assessed using R-Squared. 

In future for resources provisioning, the model 

applied Lagrange Multiplier technique to provision 

right amount of resources for a job to be completed 

within a given deadline. The improved HP model was 

more economical in resource provisioning than the 

HP model. 

FUTURE ENHANCEMENT 

Running a MapReduce Hadoop job on a public cloud 

such as Amazon EC2 necessitates a performance 

model to estimate the job execution time and further 

to provision a certain amount of resources for the job 

to complete within a given deadline. It has presented 

an improved HP model to achieve this goal taking 

into account multiple waves of the shuffle phase of a 

Hadoop job. The improved HP model was initially 

evaluated on an in-house Hadoop cluster and 

subsequently evaluated on the EC2 Cloud. The 

experimental results showed that the improved HP 

model outperforms both Starfish and the HP model in 

job execution estimation. Similar to the HP model, 

the improved HP model provisions resources for 

Hadoop jobs with deadline requirements. However, 

the improved HP model is more economical in 

resource provisioning than the HP model.Both 

models over-provision resources for user jobs with 

large deadlines in the cases where VMs are 

configured with a large number of both map slots and 

reduce slots.  

One future work would be to consider dynamic 

overhead of the VMs involved in running the user 

jobs to minimize resource over-provisioning. 

Currently the improved HP model only considers 

individual Hadoop jobs without logical dependencies. 
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Another future work will be to model multiple 

Hadoop jobs with execution conditions. 
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