
ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE) Vol. 3, Special Issue 7, March 2017

All Rights Reserved © 2017 IJARMATE 34

Hadoop Performance Modelling for Job Estimation

and Resource Allocation

S.PONMANI
1
, Dr.C.SUMITHRADEVI

2

1. P.G. Student, Dept. of MCA, VSB Engineering College, Karur, Tamilnadu, India

2. Assistant Professor, Dept. of MCA, VSB Engineering College, Karur, Tamilnadu, India

ABSTRACT: Map Reduce has become a major

computing model for data intensive applications.

Hadoop, an open source implementation of Map

Reduce, has been adopted by an increasingly growing

user community. Cloud computing service providers

such as Amazon EC2 Cloud offer the opportunities

for Hadoop users to lease a certain amount of

resources and pay for their use. However, a key

challenge is that cloud service providers do not have

a resource provisioning mechanism to satisfy user

jobs with deadline requirements. Currently, it is

solely the user’s responsibility to estimate the

required amount of resources for running a job in the

cloud. This work presents a Hadoop job performance

model that accurately estimates job completion time

and further provisions the required amount of

resources for a job to be completed within a deadline.

The proposed model builds on historical job

execution records and employs Locally Weighted

Linear Regression (LWLR) technique to estimate the

execution time of a job. Furthermore, it employs

Lagrange Multipliers technique for resource

provisioning to satisfy jobs with deadline

requirements.

1. INTRODUCTION

Many organizations are continuously collecting

massive amounts of datasets from various sources

such as the World Wide Web, sensor networks and

social networks. The ability to perform scalable and

timely analytics on these unstructured datasets is a

high priority task for many enterprises. It has become

difficult for traditional network storage and database

systems to process these continuously growing

datasets. MapReduce, originally developed by

Google, has become a major computing model in

support of data intensive applications. It is a highly

scalable, fault-tolerant and data parallel model that

automatically distributes the data and parallelizes the

computation across a cluster of computers. Among its

implementations such as Mars, Phoenix, Dryad and

Hadoop, Hadoop has received a wide uptake by the

community due to its open source nature. Building on

the HP model, this system presents an improved HP

model for Hadoop job execution estimation and

resource provisioning. The major objectives of the

system are as follows:

• The improved HP work mathematically models

all the three core phases of a Hadoop job. In

contrast, the HP work does not mathematically

model the non-overlapping shuffle phase in the

first wave.

• The improved HP model employs locally

weighted linear regression (LWLR) technique to

estimate the execution time of a Hadoop job with

a varied number of reduce tasks. In contrast, the

HP model employs a simple linear regress

technique for job execution estimation which

restricts to a constant number of reduce tasks.

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE) Vol. 3, Special Issue 7, March 2017

All Rights Reserved © 2017 IJARMATE 35

• Based on job execution estimation, the improved

HP model employs Lagrange Multiplier

technique to provision the amount of resources

for a Hadoop job to complete within a given

deadline.

2. LITERATURE SURVEY

A. DYNAMIC SLOT ALLOCATION

TECHNIQUE

Dynamic Hadoop Fair Scheduler(DHFS)

It schedules the job in order manner, it has pool-

independent DHFS(PI-DHFS) and pool-dependent

DHFS(PD-DHFS).Pool dependent DHFS have each

pool which satisfy only its own map and reduce tasks

with its shared map and reduce slots between its map-

phased pool and reduce-phased pool,it is known to be

intra pool dynamic slots allocation. Pool independent

DHFS considers the dynamic slots allocation from

the cluster level itself, instead of pool-level. The map

tasks have priority in the use of map slots and reduce

tasks have priority to reduce slots are called as intra

phase dynamic slots allocation. When the respective

phase slots requirements met excess slots be used by

other phase are referred as inter phase dynamic slots

allocation.

Dynamic slot allocation

It is a technique for managing global session

resources and it allows dynamic resizing of the cache

per-client, per-load basis. The client communicates to

the server about whether resources are filled in all

slots or not filled in the slots. The server then decides

how many slots it should allocate to that client in the

future. Communication occurs via the sequence

operation, which means that updates occur on every

step.

Process of Hadoop Fair Scheduler

It runs small jobs quickly, even if they are sharing a

cluster with large jobs. The users should only need to

configure, it support reconfigure at runtime without

requiring a cluster restart. Fair scheduling is a method

of assigning resources to jobs. When there is a single

job running, that job uses the entire cluster. When

other jobs are submitted, tasks slots that free up are

assigned to the new jobs, so that each job gets

roughly the same amount of CPU time.

B. JOB SCHEDULING FOR MULTI-USER

MAPREDUCE CLUSTERS

Job scheduling process

Job scheduling in Hadoop is performed by the job

master,which manages a number of worker nodes in

the cluster. Each worker has a fixed number of map

and reduce slots,which can run tasks.The workers

periodically send heartbeats to the master to reporting

the number of free slots and tasks. The objective of

scheduling is to determine the job schedules that

minimize or maximize a measure of performance. It

can be characterized by a set of jobs, each with one

or more operations.

Multi user cluster scheduling

The jobs are composed of small independent tasks,it

is possible to isolate while using cluster

efficiently. The steps in multi user cluster scheduling

are to make tasks small in length having small tasks

make other new jobs to startup quickly.

Delay scheduling

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE) Vol. 3, Special Issue 7, March 2017

All Rights Reserved © 2017 IJARMATE 36

The job which is to be scheduled next, should wait

for the previous job to be completed. After

completion of the previous job,the current job should

be processed and delay occurs. This type of job

scheduling are known as delay scheduling.

Copy compute splitting

HDFS copy tasks that because they perform large

amounts of memory copies when merging map

outputs, there is little gain from copy-compute (copy

tasks compete with compute tasks with CPU).

2.1 EXISTING SYSTEM

Meeting job deadlines is difficult in current Hadoop

platforms. First, because jobs have diverse resource

demands, it is hard to determine how much resource

is needed for each job to avoid its deadline miss.

Second, Hadoop clusters are usually shared by

multiple jobs and the scheduling order of these jobs

can affect job completion time]. Thus, allocating

sufficient resources alone may not guarantee job

completion time effectively. While existing

schedulers in Hadoop, such as the default FIFO

scheduler, Fair scheduler, Capacity scheduler, the

RAS scheduler, and their variations, optimize job

completion time without considering deadlines.

2.1.1 DISADVANTAGES

• Current use of Hadoop in research and enterprises

still has significant room for improvement on the

performance of Hadoop jobs and the utilization of

Hadoop clusters. There is a growing need for

providing predictable services to Hadoop users who

have strict requirements on job completion times

(i.e., deadlines).

• Does not consider the mapping between VM’s

and hosts. I.e no load balancing is done.

• Longer jobs always tend to get pushed back, as

shorter jobs get priority.

• It uses static allocation. Does not consider

dynamic allocation

2.2 PROPOSED SYSTEM

MapReduce has become a major computing model

for data intensive applications. Hadoop, an open

source implementation of MapReduce, has been

adopted by an increasingly growing user community.

Cloud computing service providers such as Amazon

EC2 Cloud offer the opportunities for Hadoop users

to lease a certain amount of resources and pay for

their use. However, a key challenge is that cloud

service providers do not have a resource provisioning

mechanism to satisfy user jobs with deadline

requirements. Currently, it is solely the user’s

responsibility to estimate the required amount of

resources for running a job in the cloud. The

proposed system presents a Hadoop job performance

model that accurately estimates job completion time

and further provisions the required amount of

resources for a job to be completed within a deadline.

The proposed model builds on historical job

execution records and employs Locally Weighted

Linear Regression (LWLR) technique to estimate the

execution time of a job. Furthermore, it employs

Lagrange Multipliers technique for resource

provisioning to satisfy jobs with deadline

requirements.

2.2.1 BENFITS OF PROPOSED SYSTEM

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE) Vol. 3, Special Issue 7, March 2017

All Rights Reserved © 2017 IJARMATE 37

• The improved HP work mathematically models all

the three core phases of a Hadoop job. In contrast, the

HP work does not mathematically model the non-

overlapping shuffle phase in the first wave.

• The improved HP model employs Locally Weighted

Linear Regression (LWLR) technique to estimate the

execution time of a Hadoop job with a varied number

of reduce tasks. In contrast, the HP model employs a

simple linear regress technique for job execution

estimation which restricts to a constant number of

reduce tasks.

• Based on job execution estimation, the improved HP

model employs Langrage Multiplier technique to

provision the amount of resources for a Hadoop job

to complete within a given deadline.

3. SYSTEM DESCRIPTION

Recently, a number of sophisticated Hadoop

performance models are proposed. Starfish collects a

running Hadoop job profile at a fine granularity with

detailed information for job estimation and

optimization. On the top of Starfish, Elasticiser is

proposed for resource provisioning in terms of virtual

machines. However, collecting the detailed execution

profile of a Hadoop job incurs a high overhead which

leads to an overestimatedjob execution time. The HP

model considers both the overlapping and non-

overlapping stages and uses simple linear regression

for job estimation. This model also estimates the

amount of resources for jobs with deadline

requirements. CRESP estimates job execution and

supports resource provisioning in terms of map and

reduce slots. However, both the HP model and

CRESP ignore the impact of the number of reduce

tasks on job performance. The HP model is restricted

to a constant number of reduce tasks, whereas

CRESP only considers a single wave of the reduce

phase. In CRESP, the number of reduce tasks has to

be equal to number of reduce slots. It is unrealistic to

configure either the same number of reduce tasks or

the single wave of the reduce phase for all the jobs. It

can be argued that in practice, the number of reduce

tasks varies depending on the size of the input

dataset, the type of a Hadoop application (e.g., CPU

intensive, or disk I/O intensive) and user

requirements. Furthermore, for the reduce phase,

using multiple waves generates better performance

than using a single wave especially when Hadoop

processes a large dataset on a small amount of

resources. While a single wave reduces the task setup

overhead, multiple waves improve the utilization of

the disk I/O.

Normally a Hadoop job execution is divided into a

map phase and a reduce phase. The reduce phase

involves data shuffling, data sorting and user-defined

reduce functions. Data shuffling and sorting are

performed simultaneously. Therefore, the reduce

phase can be further divided into ashuffle (or sort)

phase and a reduce phase performing userdefined

functions. As a result, an overall Hadoop job

execution work flow consists of a map phase, a

shuffle phase and a reduce phase as shown in Fig. 1.

Map tasks are executed in map slots at a map phase

and reduce tasks run in reduce slots at a reduce phase.

Every task runs in one slot at a time. A slot is

allocated with a certain amount of resources in terms

of CPU and RAM. A Hadoop job phase can be

completed in a single wave or multiple waves. Tasks

in a wave run in parallel on the assigned slots.

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE) Vol. 3, Special Issue 7, March 2017

All Rights Reserved © 2017 IJARMATE 38

Fig. 1. Hadoop job execution flow

Modeling Map Phase

In this phase, a Hadoop job reads an input dataset

from Hadoop distributed file system (HDFS), splits

the input dataset into data chunks based on a

specified size and then passes the data chunks to a

user-define map function. The map function

processes the data chunks and produces a map output.

The map output is called intermediate data.

Modeling Reduce Phase

In this phase, a job reads the sorted intermediate data

as input and passes to a user-defined reduce function.

The reduce function processes the intermediate data

and produces a final output. In general, the reduce

output is written back into the HDFS.

Modeling Shuffle Phase

In this phase, a Hadoop job fetches the intermediate

data, sorts it and copies it to one or more reducers.

The shuffle tasks and sort tasks are performed

simultaneously, therefore, generally consider them as

a shuffle phase.

Hadoop performance modeling has become a

necessity in estimating the right amount of resources

for user jobs with deadline requirements. It should be

pointed out that modeling Hadoop performance is

challenging because Hadoop jobs normally involve

multiple processing phases including three core

phases (i.e. map phase, shuffle phase and reduce

phase). Moreover, the first wave of the shuffle phase

is normally processed in parallel with the map phase

(i.e. overlapping stage) and the other waves of the

shuffle phase are processed after the map phase is

completed (i.e. non overlapping stage).

Objectives:

1. Offer the opportunities for Hadoop users to lease a

certain amount of resources and pay for their use.

2. Provisioning mechanism to satisfy user jobs.

3. Accurately estimates job completion time and

further provisions the required amount of resources

for a job to be completed within a deadline.

4. Providing accuracy for performance of system.

The proposed system called Hadoop Performance

Modeling for Job Optimization. In Proposed System

it present improved HP model for Hadoop job

execution estimation and resource provisioning. The

improved HP work mathematically models all the

three core phases of a Hadoop job. In contrast, the

HP work does not mathematically model the non-

overlapping shuffle phase in the first wave. The

improved HP model employs Locally Weighted

Linear Regression (LWLR) technique to estimate the

execution time of a Hadoop job with the varied

number of reduce tasks. In contrast, the HP model

employs a simple linear regress technique for job

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE) Vol. 3, Special Issue 7, March 2017

All Rights Reserved © 2017 IJARMATE 39

execution estimation which restricts to a constant

number of reduce tasks. Based on the job execution

estimation, the improved HP model employs

Langrage Multiplier technique to provision the

amount of resources for Hadoop job to complete

within a given deadline.

The major contributions of this system are as

follows:

1. The improved HP work mathematically models all

the three core phases of a Hadoop job. In contrast, the

HP work does not mathematically model the non

overlapping shuffle phase in the first wave.

2. The improved HP model employs Locally

Weighted Linear Regression (LWLR) technique to

estimate the execution time of a Hadoop job with a

varied number of reduce tasks. In contrast, the HP

model employs a simple linear regress technique for

job execution estimation which restricts to a constant

number of reduce tasks.

3. Based on job execution estimation, the improved

HP model employs Lagrange Multiplier technique to

provision the amount of resources for a Hadoop job

to complete within a given deadline. The

performance of the improved HP model is initially

evaluated on an in-house Hadoop cluster and

subsequently on Amazon EC2 Cloud.

The estimated values of both the shuffle phase and

the reduce phase are used in the improved HP model

to estimate the overall execution time of a Hadoop

job when processing a new input dataset. Figure

shows the overall architecture of the improved HP

model, which summarizes the work of the improved

HP model in job execution estimation. The boxes in

gray represent the same work presented in the HP

model. It is worth noting that the improved HP model

works in an offline mode and estimates the execution

time of a job based on the job profile.

Fig. 2. System Architecture

PROPOSED ALGORITHM

Algorithm 1: Compute VM Load from data nodes

Input: ith Node input

Output: Idle or Normal Or Overloaded in percent

Compute Load (VM id) :

Weight Degree Inputs: The static parameter comprise

the number of CPUs, the CPU dispensation speeds,

the reminiscence size, etc. active parameters are the

memory consumption ratio, the CPU exploitation

ratio, the network bandwidth.

Procedure:

Step 1: Characterize a load limit set: F= {F1,F2. .Fm}

with each Fire present the total number of the

consideration.

Step 2: Calculate the load capacity as weight Load

Degree(N)=(∑αi Fi) , Where, i=(1,...,m).

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE) Vol. 3, Special Issue 7, March 2017

All Rights Reserved © 2017 IJARMATE 40

Step 3: Ordinary cloud partition degree from the node

consignment degree statics as: Load amount avg

=∑(i=1..n)Load Degree(Ni)

Step 4: Three height node position are defined Load

Degree(N)=0 for Inactive.

- 0 <Load Degree(N)<Load Degree(N) for overfull.

Load Degree(N)high ≤ Load Degree(N)for

overloaded.

Algorithm 2: Equally Spread Current Execution

Throttled Load balancing Algorithm

Input: File form user as Fi.

Output: Equally distributed chunks on data servers

Step 1: Read Fi from data owner with size

Step 2: count total number of data nodes Ni

Step 3: for each(score=read each vm node and call to

computenode(k)) Read when k==null End for

Step 4: create data chunks base on server loads score.

Step 5: save all data on data nodes.

3.1 MODULE DESCRIPTION

There are four modules designed to implement the

project.The four modules are:

1. Formation of clusters using Hadoop distributed file

System.

2. Establishing Mapreduce function for the datasets.

3. Estimating job Execution Time using LWLR

4. Resource Provisioning using LMT.

4. Performance Analysis.

FORMATION OF CLUSTERS USING HADOOP

DISTRIBUTED FILE SYSTEM

Setting up the Hadoop cluster in Hadoop distributed

file system with the use of data node, name node.

Secondary name node, job tracker, task tracker to

perform Hadoop operations using mapreduce

algorithm. Here individual nodes perform its own

operations . Data node stores the data in Hadoop file

system. Name node keeps the directory of all files in

the file system. Multinode clusters are formed to

perform the tasks for large datasets. A typical file in

HDFS is gigabytes to terabytes in size. It should

support tens of millions of files in a single instance.

The nodes of clusters are initially formed in this

module.

ESTABLISHING MAPREDUCE FUNCTION

FOR THE DATASETS

The workload is classified and given to the

mapreduce framework for MAP and REDUCE

process. It splits the dataset into individual lines by

using mapper instances and schedule the jobs

inaccordance with hadoop cluster

components.Workload undergoes splitting, shuffling,

sorting and reducing operations. Mapreduce allows

for distributed processing of the map and reduction

operations. Provided that each mapping operation is

independent of the others, all maps can be performed

in parallel,it is limited by the number of independent

data sources .

The Mapreduce algorithm is a two-step method for

processing a large amount of data. It process the

parallel problems across huge datasets. These

frameworks supports up to petabytes of data.

Map step: The dataset is given as a client input into

hadoop distributed file system.Under the map

process, the given dataset is splitted into individual

lines or words using mapper instances and an

intermediate output is obtained by output.

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE) Vol. 3, Special Issue 7, March 2017

All Rights Reserved © 2017 IJARMATE 41

Reduce step: Shuffle,sort and reduce are the three

process to be done in reduce phase. The intermediate

output obtained in map phase undergoes shuffle, and

it gets sorted order. At the final phase reduce ,the

dataset get reduced. Each step starts only after the

previous step is completed.

ESTIMATING JOB EXECUTION TIME USING

LWLR

LWLR maintains two separate queues for current

running jobs and waiting jobs. By default, incoming

jobs enter the waiting queue. The scheduling

optimizer determines which job is to be moved to the

running queue based on the solution of the LMT. For

example, low priority jobs or jobs with distant

deadlines may not be immediately allocated

resources by the LMT algorithm, i.e., uj(t) = 0. These

jobs wait until they receive resource allocation from

the scheduling optimizer. Since the resource

allocation is determined once for every control

interval, it is possible that short jobs whose deadline

is earlier than the next control interval may miss their

deadlines due to the late allocation of resources. To

this end, we provide a fast path for short jobs in the

job queue management, that is, it immediately moves

a short job to the running queue.

Fuzzy performance model takes allocated resources

and job size as inputs and generates the estimated job

completion time as outputs. The model is updated

periodically based on the measured job progress at

each control interval.

RESOURCE PROVISIONING USING LMT

Resource predictor takes the history information on

resource availability and predicts the amount of

available resources for the next few intervals.

Scheduling optimizer adjusts the number of slots

allocated to each running job based on an online

receding horizon control algorithm. However, a job’s

completion time yj can only be measured when the

job finishes. It is often too late for the Hadoop

scheduler to intervene if a job already misses its

deadline. To this end, break down a job’s execution

into small intervals and apply calibrated deadlines for

each interval. Consider a job’s deadline is 100

minutes away and the execution is divided into 10

intervals. If the job can finish one tenth of the total

work in each interval, it can meet the overall

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE) Vol. 3, Special Issue 7, March 2017

All Rights Reserved © 2017 IJARMATE 42

deadline. The Hadoop scheduler can adjust the

resource allocation if a job’s execution is considered

slow based on its progress on individual intervals.

Such a breakdown of job execution also allows the

scheduler to look forward into future intervals and

apply optimization considering future resource

availability.

PERFORMANCE ANALYSIS THROUGH

MAKE SPAN AND RESPONSE TIME

FACTORS

To identify the performance analysis of the disks

located in Hadoop distributed file system by

identifying its computation time and its response

factors. The analysis dependent on parameters such

as: dataset size, number of nodes, number of reducers

and loading overhead. The results indicate strong

dependence on the amount of reducers and IO

performance of the cluster, which proves the

common opinion that Mapreduce is IO bound. These

results can help to compare performance behavior of

different languages and serve as a basis for

understanding the influence of configuration

parameters on the final performance.

4. CONCLUSION

The improved HP model mathematically modeled

three core phases i.e. map phase, shuffle phase and

reduce phase included overlapping and

nonoverlapping stages of a Hadoop job. The

proposed model employed LWLR to estimates

execution duration of a job that takes into account a

varied number of reduce tasks The LWLR model was

validated through 10-fold cross-validation technique

and its goodness of fit was assessed using R-Squared.

In future for resources provisioning, the model

applied Lagrange Multiplier technique to provision

right amount of resources for a job to be completed

within a given deadline. The improved HP model was

more economical in resource provisioning than the

HP model.

FUTURE ENHANCEMENT

Running a MapReduce Hadoop job on a public cloud

such as Amazon EC2 necessitates a performance

model to estimate the job execution time and further

to provision a certain amount of resources for the job

to complete within a given deadline. It has presented

an improved HP model to achieve this goal taking

into account multiple waves of the shuffle phase of a

Hadoop job. The improved HP model was initially

evaluated on an in-house Hadoop cluster and

subsequently evaluated on the EC2 Cloud. The

experimental results showed that the improved HP

model outperforms both Starfish and the HP model in

job execution estimation. Similar to the HP model,

the improved HP model provisions resources for

Hadoop jobs with deadline requirements. However,

the improved HP model is more economical in

resource provisioning than the HP model.Both

models over-provision resources for user jobs with

large deadlines in the cases where VMs are

configured with a large number of both map slots and

reduce slots.

One future work would be to consider dynamic

overhead of the VMs involved in running the user

jobs to minimize resource over-provisioning.

Currently the improved HP model only considers

individual Hadoop jobs without logical dependencies.

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE) Vol. 3, Special Issue 7, March 2017

All Rights Reserved © 2017 IJARMATE 43

Another future work will be to model multiple

Hadoop jobs with execution conditions.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce:

Simplified data processing on large clusters,”

Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[2] R. L€ammel, “Google’s MapReduce

programming model—Revisited,” Sci. Comput.

Programm., vol. 70, no. 1, pp. 1–30, 2008.

[3] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and

T. Wang, “Mars: A MapReduce framework on

graphics processors,” in Proc. 17
th

 Int. Conf. Parallel

Archit. Compilation Techn., 2008, p. 260.

[4] K. Taura, T. Endo, K. Kaneda, and A. Yonezawa,

“Phoenix: A parallel programming model for

accommodating dynamically joining/ leaving

resources,” ACM SIGPLAN Notices, vol. 38, no. 10,

pp. 216–229, 2003.

[5] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D.

Fetterly, “Dryad: Distributed data-parallel programs

from sequential building blocks,” ACM SIGOPS

Oper. Syst. Rev., vol. 41, no. 3, pp. 59–72, Mar.

2007.

[6] Apache Hadoop [Online]. Available:

http://hadoop.apache.org:/ (Last accessed: 1 March

2015).

[7] D. Jiang, B. C. Ooi, L. Shi, and S. Wu, “The

performance of Map- Reduce: An in-depth study,”

Proc. VLDB Endowment, vol. 3, nos. 1/2, pp. 472–

483, Sep. 2010.

[8] U. Kang, C. E. Tsourakakis, and C. Faloutsos,

“PEGASUS: Mining Peta-scale Graphs,” Knowl. Inf.

Syst., vol. 27, no. 2, pp. 303–325, May 2011.

[9] B. Panda, J. S. Herbach, S. Basu, and R. J.

Bayardo, “PLANET: Massively parallel learning of

tree ensembles with MapReduce,” Proc. VLDB

Endowment, vol. 2, no. 2, pp. 1426–1437, Aug. 2009.

[10] A. Pavlo, E. Paulson, and A. Rasin, “A

comparison of approaches to large-scale data

analysis,” in Proc. ACM SIGMOD Int. Conf. Manag.

Data, 2009, pp. 165–178.

[11] X. Lin, Z. Meng, C. Xu, and M. Wang, “A

practical performance model for Hadoop

MapReduce,” in Proc. IEEE Int. Conf. Cluster

Comput. Workshops, 2012, pp. 231–239.

[12] X. Cui, X. Lin, C. Hu, R. Zhang, and C. Wang,

“Modeling the performance of MapReduce under

resource contentions and task failures,” in Proc. IEEE

5th Int. Conf. Cloud Comput. Technol. Sci., 2013,

vol. 1, pp. 158–163.

[13] V. Jalaparti, H. Ballani, P. Costa, T.

Karagiannis, and A. Rowstron. Bazaar: Enabling

predictable performance in datacenters. Microsoft

Res., Cambridge, U.K., Tech. Rep. MSR-TR- 2012–

38 [Online].

