
ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE) Vol. 3, Special Issue 7, March 2017

All Rights Reserved © 2017 IJARMATE 3

cStream: Cloud based high performance video delivery network

KARTHIKA.M 1, M.MOHANAPRIYA 2

1. P.G. Student, Dept. of MCA, VSB Engineering College, Karur, Tamilnadu, India

2. HoD, Dept. of MCA, VSB Engineering College, Karur, Tamilnadu, India

Abstract—Live streaming and video-on
demand are increasing at a rapid pace.
Global Over-the-top (OTT) video market is
estimated to grow to $37.2 billion by 2017.
However, live video streaming continues to
suffer from high buffering ratios, high join
times, high join failures and low average bit
rates. The economic impact of these user
experience metrics is huge. Recent studies
have shown that traditional CDNs account
for more than 20% of these join failure and
bit rate degradation issues. In this paper, we
present CSTREAM- a high performance
cloud based live video delivery network.
CSTREAM leverages the Cloud provider’s
global footprint, Cloud provider’s high
performance backbone network between
different data centers, social media analytics
and a UDP based fast data transfer protocol
to optimize the quality of experience for end
users, and the total cost incurred by the
cloud provider in terms of network
bandwidth and compute resources.
CSTREAM allows a video broadcaster to be
redirected to its closest publishing point (PP
- hosted inside the “closest” Cloud data
center), and then transfers the live stream at
high speed using a UDP based fast protocol
to one or more receiver side proxy (RSP)
nodes (hosted on different Cloud data
centers) worldwide, before being delivered
to the eventual receiver devices.

1. INTRODUCTION

Video streaming is an increasingly popular

Internet application. However, despite its

popularity, real-time video streaming still

remains a challenge in many scenarios.

Limited home broadband bandwidth and

mobile phone 3G bandwidth means many

users stream videos at low quality and

compromise on their user experience. To

overcome this problem, we propose

CStream, a system that aggregates

bandwidth from multiple co-operating users

in a neighborhood environment for better

video streaming. CStream exploits the fact

that wireless devices have multiple network

interfaces and connects co-operating users

with a wireless ad-hoc network to aggregate

their unused downlink Internet bandwidth to

improve video quality. CStream

dynamically generates a streaming plan to

stream a single video using multiple

connections and continuously adapts to

changes in the neighborhood and variations

in the available bandwidth. The main

objectives of the proposed system are,

• To built a system fot CStream and evaluated

it on a controlled test-bed of computers with

various performance measures.

• To show linear increase in throughput and

improved video streaming quality as the

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE) Vol. 3, Special Issue 7, March 2017

All Rights Reserved © 2017 IJARMATE 4

number of cooperating users in a

neighborhood increase.

• CSTREAM does not make any changes to

end devices and still results in significantly

lower startup times, low buffering ratios and

high average bit rates all key QoE

parameters that determine user stickiness.

2 RELATED WORK

The cache node will check for the content

(static web page fragments, images,

JavaScript files, etc) being requested in its

local disk (or local area network) and if

found, it will serve it locally. If not found, it

will pull a copy of the content from the

origin server. This is the typical “pull mode”

of operation of a CDN (similar to the use of

hierarchical memory caches on traditional

computing systems). It is also possible to

push content proactively (referred to as

“push mode”) to all or selected cache nodes.

A CDN can reduce the rendering time of

most web pages drastically as it serves most

content from a location that is much closer

the client than the origin server. B. Live and

Video On Demand (VoD) on the Internet

Video On Demand (VoD) refers to video

that is hosted on one or more servers in the

cloud and is streamed to a viewer when it

explicitly requests for that video. Live

Internet video, on the other hand, refers to

scenarios wherein a live event is broadcast

to one or more viewers across the world

over the Internet. This is becoming

increasingly popular for sports events [5],

[6] and for user generated content shared

over social media [7]. Live video is typically

captured by a camera (which could be on a

mobile phone), converted into one or more

desired formats at predetermined bit rates,

and then either sent directly to the viewers

or first transferred to one or more origin

servers on the cloud. Once a live video feed

is hosted on an origin server, it is streamed

almost like Video on Demand. Typically

live Internet video has a streaming delay of

around 30 seconds due to the time taken in

sending the feed first to a cloud server,

transcoding and then streaming it. C. ABR

Streaming and HTTP Progressive

Downloads RTSP (Real Time Streaming

Protocol) and HTTP are the two most

popular protocols for streaming live video

and VoD. HTTP is widely supported across

all devices and firewalls and hence is

usually the most preferred way of streaming

video (e.g. HTTP Live Streaming (HLS)).

Both live and VoD use ABR (Adaptive Bit

Rate) streaming (or HTTP progressive

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE) Vol. 3, Special Issue 7, March 2017

All Rights Reserved © 2017 IJARMATE 5

downloads in case of HTTP). A video file is

first broken into small chunks or segments

through a process called ABR chunking.

Each chunk is of a small duration (typically

less than 10 seconds), and is encoded at

different bit rates. The client video player

requests the initial chunk based on the

observed bandwidth to the server (there are

various ways to detect the available

bandwidth between the client and the video

server). As the video plays out, if the

channel conditions between the client and

the video server improve, client would

request the next chunk at a higher bit rate

and if they worsen, the client would request

the next chunk at a lower bit rate. This

adaption of bit rates help in providing

seamless quality-of-experience and graceful

degradation in presence of jittery network

conditions. Breaking a video file into small

chunks in case of HTTP progressive

downloads, also makes the streaming

process CDN friendly since these small

chunks can be cached and served by

traditional CDNs just like any other web

content. Both VoD and live video can make

of ABR streaming and HTTP progressive

downloads. However, in case of live videos,

traditional CDNs can distribute the live

video feed only after the feed is available on

an origin server on the cloud. This implies,

that if there is a live event in Australia, and

the origin server is in the US, even to serve a

local client in Australia the live feed has to

be first transferred to the origin server in the

US (in practice, it is very likely that there

will be more than 1 origin servers).

2.1 EXISTING SYSTEM

Traditional CDNs face many challenges in

live and ondemand video delivery: CDNs

are already responsible for a significant

fraction of video quality problems for both

live and VoD (including 20% of join failures

and 22% of bitrate degradation).

Furthermore, live video is shifting to viral

user-created streams. Traditional CDNs

were meant for serving static files and web

page fragments which were typically pulled

by the web site visitors all over the world.

However, a live video stream has to travel

from a live event location to its viewers all

around the world in real time. CDNs need to

maximize video-specific quality metrics

(e.g., high bitrate and low join time) for both

popular and unpopular streams while

simultaneously coping with unexpected

shifts in popularity/network conditions

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE) Vol. 3, Special Issue 7, March 2017

All Rights Reserved © 2017 IJARMATE 6

Another issue is the use of pre-determined

encoding options. Pre-determined encoding

options can lead to inefficient use of

bandwidth or reduced user experience. Fine

grained bit rate adaptation can alleviate

several buffering and join problems.

2.1.1 Disadvantages of Existing System

CDNs for live video require extensive CPU

and storage resources that are typically

associated with cloud providers. These

resources are required both at the ingress

and egress points in the cloud network to

host various video processing and handling

tasks Cloud demand elasticity enables the

cloud provider to reuse these resources for

other workloads when the live video

workload reduces in volume.

The buffered unwatched video may be

wasted if the user turns off the video player

or switches to other videos.

Instead, ideally, when one bit is in error, the

effect on the reconstructed video should be

unperceivable, with minimal overhead. In

addition, the perceived video quality should

gracefully and proportionally degrade with

decreasing channel quality.

2.2 PROPOSED SYSTEM

The system proposed the CSTREAM- a high

performance cloud based live video delivery

network. CSTREAM leverages the Cloud

provider’s global footprint, Cloud provider’s

high performance backbone network

between different data centers,social media

analytics and a UDP based fast data transfer

protocol to optimize the quality of

experience for end users, and the total cost

incurred by the cloud provider in terms of

network bandwidth and compute resources.

CSTREAM allows a video broadcaster to be

redirected to its closest publishing point (PP

- hosted inside the “closest” Cloud data

center), and then transfers the live stream at

high speed using a UDP based fast protocol

to one or more receiver side proxy (RSP)

nodes (hosted on different Cloud data

centers) worldwide, before being delivered

to the eventual receiver devices. An

multicast overlay is created to optimize the

internal Cloud network bandwidth, while

using a fast data transfer protocol like

Aspera FASP between different nodes in the

multicast overlay. Unlike Traditional

Content Delivery Networks (CDNs) that are

primarily receiver driven and comprise of

passive cache nodes that act as passive

servers that serve files, CSTREAM has

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE) Vol. 3, Special Issue 7, March 2017

All Rights Reserved © 2017 IJARMATE 7

active publishing points (PP) and receiver

side proxy (RSP) nodes that are effective for

both senders and receivers.

Advantage:

� Smooth and high quality video streaming.

� Avoid playback interruption and achieve

better smoothness and quality.

� CSTREAM does not make any changes to

end devices and still results in significantly

lower startup times, low buffering ratios and

high average bit rates all key QoE

parameters that determine user stickiness.

3. SYSTEM DESCRIPTION

A content delivery network typically

consists of a large number of cache nodes or

“points of presence” (PoPs) distributed all

over the world and interconnected by a

medium to high bandwidth network. A

website host (also referred to as the “origin

host”) will redirect an incoming client

request to its nearest cache nodes based on

its geographical location. The cache node

will check for the content (static web page

fragments, images, JavaScript files, etc)

being requested in its local disk (or local

area network) and if found, it will serve it

locally. If not found, it will pull a copy of

the content from the origin server. This is

the typical “pull mode” of operation of a

CDN (similar to the use of hierarchical

memory caches on traditional computing

systems). It is also possible to push content

proactively (referred to as “push mode”) to

all or selected cache nodes. A CDN can

reduce the rendering time of most web pages

drastically as it serves most content from a

location that is much closer the client than

the origin server.

Video On Demand (VoD) refers to video

that is hosted on one or more servers in the

cloud and is streamed to a viewer when it

explicitly requests for that video. Live

Internet video, on the other hand, refers to

scenarios wherein a live event is broadcast

to one or more viewers across the world

over the Internet. This is becoming

increasingly popular for sports events and

for user generated content shared over social

media. Live video is typically captured by a

camera (which could be on a mobile phone),

converted into one or more desired formats

at predetermined bit rates, and then either

sent directly to the viewers or first

transferred to one or more origin servers on

the cloud. Once a live video feed is hosted

on an origin server, it is streamed almost

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE) Vol. 3, Special Issue 7, March 2017

All Rights Reserved © 2017 IJARMATE 8

like Video on Demand. Typically live

Internet video has a streaming delay of

around 30 seconds due to the time taken in

sending the feed first to a cloud server,

transcoding and then streaming it.

RTSP (Real Time Streaming Protocol) and

HTTP are the two most popular protocols

for streaming live video and VoD. HTTP is

widely supported across all devices and

firewalls and hence is usually the most

preferred way of streaming video (e.g.

HTTP Live Streaming (HLS)). Both live and

VoD use ABR (Adaptive Bit Rate)

streaming (or HTTP progressive downloads

in case of HTTP). A video file is first broken

into small chunks or segments through a

process called ABR chunking. Each chunk

is of a small duration (typically less than 10

seconds), and is encoded at different bit

rates. The client video player requests the

initial chunk based on the observed

bandwidth to the server (there are various

ways to detect the available bandwidth

between the client and the video server). As

the video plays out, if the channel conditions

between the client and the video server

improve, client would request the next

chunk at a higher bit rate and if they worsen,

the client would request the next chunk at a

lower bit rate. This adaption of bit rates help

in providing seamless quality-of-experience

and graceful degradation in presence of

jittery network conditions. Breaking a video

file into small chunks in case of HTTP

progressive downloads, also makes the

streaming process CDN friendly since these

small chunks can be cached and served by

traditional CDNs just like any other web

content. Both VoD and live video can make

of ABR streaming and HTTP progressive

downloads. However, in case of live videos,

traditional CDNs can distribute the live

video feed only after the feed is available on

an origin server on the cloud. This implies,

that if there is a live event in Australia, and

the origin server is in the US, even to serve a

local client in Australia the live feed has to

be first transferred to the origin server in the

US (in practice, it is very likely that there

will be more than 1 origin servers).

These considerations formed the basis of

the design principles for CSTREAM.

Video Processing Nodes (VPNs) - PP and

RSP

Video Processing Nodes (VPNs) primarily

comprise of a video streaming engine and a

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE) Vol. 3, Special Issue 7, March 2017

All Rights Reserved © 2017 IJARMATE 9

custom data transfer stack. PP and RSP

nodes are identical in terms of functional

components, since all RSP also act as a

publishing point for nearby RSPs who

request a video feed from them. The system

uses ffserver as the video streaming server

and ffmpeg as the video upload/download

engine. ffserver and ffmpeg have out-of-the-

box support for a few video and audio

encoders and decoders and more can be

compiled and added separately. ffserver uses

a configuration file to list all the video files

it can stream. ffserver code was modified to

ensure that new video feeds can be added

dynamically to its configuration file without

restarting it. The system uses byte streaming

APIs to send requested video feeds from PP

nodes to RSP nodes, and from RSP nodes to

other RSP nodes.

Orchestrator Node(s)

Orchestrator Node has API handlers for

download and upload requests. The upload

request is a GET request. Upload request

handler on the Orchestrator Node invokes

the PP selector algorithm and sends the URL

of the PP node in its response to the sender.

The sender then sends the same GET request

to the PP node, and a handler at the PP node

first adds the video to be uploaded to the

ffserver configuration file and to the

Cloudant database so that it is available for

RSPs immediately. The handler then sends

the URI of the ffserver to the client in its

response, who it turn issues a POST request

to upload its video feed directly to its

selected PP (running the ffserver). Similarly,

the download request (issued by a player

interestedin viewing the live video feed) is

also a GET request. Download request

handler figures out the client location using

the geolite database and searches for the 5

closest RSP location ids and retrieves their

IPs from the Cloudant database using the

those ids.

RSP selector algorithm is invoked, and the

client is redirected to the selected RSP.

When the handler at the RSP receives a

/download request, it checks if it already has

the requested stream by querying the

Cloudant database. If yes, then it redirects

the receiver to the ffserver URI with that

stream. If not, then it adds the feed and

stream to the ffserver configuration file and

then runs the ffmpeg command to get the

stream from some other data center (which

could be a PP or another close by RSP) that

it gets by querying the Cloudant database for

the server with that stream. The live video

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE) Vol. 3, Special Issue 7, March 2017

All Rights Reserved © 2017 IJARMATE 10

feed thus received from another RSP or the

PP, is simultaneously streamed using the

ffserver on the RSP (after adding the feed to

the ffserver configuration file).

InfraMonitor

CSTREAM InfraMonitor gathers two kinds

of data — available bandwidth on the path

from end clients (sender or receivers) to the

potential PP or RSP nodes, and resource

utilization information from the servers that

are part of CSTREAM

Input: V: set of all servers that are part of

CSTREAM, L: set of network links

1: function INFRAMONITOR(V, L)

2: /*Collect statistics*/

3: COLLECTBWSTATS(V)

4: COLLECTCPUUTIL(V)

5: COLLECTMEMUTIL(V)

6: /*Notify listeners of update()*/

7: NOTIFY()

8: end function

InfraMonitor measures available bandwidth

from the “Q” potential PP or RSP host cloud

data centers to the sender or receiver using a

variant of “packet pair algorithms. This is

because ping tests may not suffice as latency

is not a true indicator of available

bandwidth. Some variants of packet pair

algorithms can converge in less than a

second. InfraMonitor makes use of native

cloud APIs to monitor the resource (CPU,

memory and network) usage of the various

physical servers in each data center (that

have been pre-provisioned for CSTREAM).

Score Manager Service

InfraMonitor also comprises of a Score

Manager Service. Based on the

measurements gathered by the InfraMonitor,

the Score Manager Service computes scores

for all provisioned servers whenever it

receives an update notification from the

InfraMonitor. This score is indicative of the

resources available at the server’s disposal,

which include (a) the available bandwidth

on the path(s) to the server from a sender or

a receiver, (b) % CPU utilization of the

server, and (c) % memory utilization of the

server. The lower the usage levels of a

member’s resources, the lower its score.

Input: V: set of all candidate servers

Output: _: set of scores

1: function SCOREMANAGER(V)

2: for all v 2 V do

3: Pv GETPATHS(v)

4: for all P Pv do

5: /*Compute scores*/

6: _ GETBWUTILIZATION(v)

7: _ GETCPUUTILIZATION(v)

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE) Vol. 3, Special Issue 7, March 2017

All Rights Reserved © 2017 IJARMATE 11

8: GETMEMUTILIZATION(v)

9: _ GETCOST(v)

10: _v;P GETSCORE(_, _, , _)

11: _ _ [_v;P

12: end for

13: end for

14: /*Notify listeners of update()*/

15: NOTIFY()

16: return _

17: end function

Fig.1 cSTREAM Architecture

PP and RSP Selector

PP and RSP selector first gets a list of cloud

data centers that are in close proximity to the

sender or receiver. It uses the client IP

addresses to query a local instance of the

GeoLite database to get client’s location,

and then queries the CSTREAM meta data

in Cloudant to find out the Q nearest cloud

data centers. Q is a configuration parameter,

and is typically set to less than 10 (5 being

the default value). To find the most effective

publishing point (PP) and receiver side

proxy nodes (RSP), nearest geo-locations (in

terms of network latency) may not suffice.

3.1 MODULE DESCRIPTION

PUBLISHING POINT (PP)

 A PP node is an example of a Video

Processing Node (VPN). PP nodes are

Docker containers running video streaming

engine and custom data transfer stack. They

are hosted inside a cloud data center that

exists in physical proximity to the sender of

the live video stream. For each live video

stream, CSTREAM will chose a PP node

based on physical location, overall resource

utilization (CPU, memory and network) and

cost of a data center. PP nodes comprise of a

video streaming engine

RECEIVER SIDE PROXY (RSP)

An RSP node is an example of a Video

Processing Node (VPN). RSP nodes are

Docker containers identical to PP nodes

except that they are hosted inside cloud data

centers that exist in close physical proximity

to their respective receivers of a given live

video stream. For each live video stream,

CSTREAM will chose one or more RSP

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE) Vol. 3, Special Issue 7, March 2017

All Rights Reserved © 2017 IJARMATE 12

nodes based on physical location, overall

resource utilization (CPU, memory and

network) and cost of a data center.

ORCHESTRATOR NODE (ON)

Orchestrator node is where all the business

logic and intelligence of CSTREAM resides.

ONs host the APIs to be used by senders and

receivers. Senders use a REST API to

upload a live video and the ON redirects the

sender stream to the selected PP node.

Similarly, receivers use a REST API to join

a live video stream, and the ON redirects

them to their respective selected RSP nodes.

ON comprises of all the logic for effective

PP and RSP node selection, infrastructure

monitoring, capacity planning and auto

scaling.

4. CONCLUSION

In this paper it has been presented the design

and implementation of STREAM- a high

performance cloud based live video delivery

network that leverages the Cloud providers

global footprint, Cloud providers high

performance backbone network between

different data centers, social media analytics

and a UDP based fast data transfer protocol.

CSTREAM can improve throughput and

transfer times by up to 14 times for a

transmission across the globe In this project,

it has been formulated and studies a

practical problem for large VoD streaming

service providers: how to smartly utilize

bandwidth resource to improve streaming

QoE and peak load bandwidth requirements.

It shows that these two goals are highly

coupled, and if you can cut down the

bandwidth waste you can use the saved

bandwidth to improve QoE as well as save

peak load bandwidth costs. The key is to

understand user early departure behavior

4.1 FUTURE WORK

For future work, there are many interesting

directions. On the analytical side, one can

think it is possible to further refine the

abstract model for analyzing smart

streaming at an abstract level. This would

extend the insights into the problem. On the

experimental side, it may be extended that

evaluation from single video to multiple

videos, with different lengths and multiple

resolutions. Finally, it may be considered to

work towards deploying CSTREAM on a

real large scale cloud.

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE) Vol. 3, Special Issue 7, March 2017

All Rights Reserved © 2017 IJARMATE 13

REFERENCES

[1]. M. Satyanarayanan, P. Bahl, R. Caceres,

and N. Davies, “The case for vm-based

cloudlets in mobile computing,” IEEE

Pervasive Computing, vol. 8, pp.14–23,

2009.

[2]. S. Kosta, A. Aucinas, P. Hui, R.

Mortier, and X. Zhang, “Thinkair: Dynamic

resource allocation and parallel execution in

the cloud for mobile code offloading,” in

Proc. of IEEE INFOCOM, 2012.

[3]. W. Zhu, C. Luo, J. Wang, and S. Li,

“Multimedia cloud computing,” IEEE

Signal Processing Magazine, vol. 28, pp.

59–69, 2011.

[4]. T. Coppens, L. Trappeniners, and M.

Godon, “AmigoTV: towards a social TV

experience,” in Proc. of EuroITV, 2004.

[5]. N. Ducheneaut, R. J. Moore, L.

Oehlberg, J. D. Thornton, and E. Nickell,

“Social TV: Designing for Distributed,

Sociable Television Viewing,” International

Journal of Human-Computer Interaction,

vol. 24, no. 2, pp. 136–154, 2008.

[6]. A. Carroll and G. Heiser, “An analysis

of power consumption in as smartphone,” in

Proc. of USENIXATC, 2010.

[7] A. Balachandran, V. Sekar, A. Akella,

and S. Seshan, “Analyzing the Potential

Benefits of CDN Augmentation Strategies

for Internet Video Workloads,” in IMC

2013.

