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 Abstract - The ultimate purpose of this project has been the 

implementation in MATLAB of an Elliptic Curve Cryptography 

(ECC) system, primarily the Elliptic Curve Diffie-Hellman 

(ECDH) key exchange. We first introduce the fundamentals of 

Elliptic Curves, over both the real numbers and the integers 

modulo p where p is prime. Then the theoretical underpinnings of 

the ECDH system are covered, including a brief look at how this 

system is broken. Next, we develop the individual elements that 

will be needed in the implementation of ECDH, such as functions 

for calculating modular square roots and the addition of points on 

an EO. We then bring these elements together to create a working 

ECDH program, and discuss the limitations of the MATLAB 

environment in which it was created. Finally, we look at the real 

world application of ECC and its future in the realm of 

cryptography. 

 

Index Terms-MATLAB, ECC, EDHC. 
 

I.  INTRODUCTION 

 The goal of this report is to first give a description of the 

mathematics behind Elliptic Curve Cryptography (ECC), in 

particular the Elliptic Curve Diffie-Hellman (ECDH) key 

exchange system, and secondly to de-scribe and develop the 

algorithms and methods necessary for the implementation of 

the ECDH system in the MATLAB environment. 

Later introduces the fundamental mathematics of the Elliptic 

Curve, over both the real numbers and the integers modulo p, 

where p is prime. This includes the addition law denoted by 

EB, and the construction of the abelian elliptic curve group. 

Next, in Section 3, we look at the ECDH key exchange system. 

The basis of this system is the Elliptic Curve Discrete 

Logarithm Problem (ECDLP), which is discussed in some 

detail. After outlining the steps necessary to perform an ECDH 

key exchange between two people, we give a brief overview of 

the methods available to solve the ECDLP and hence break the 

ECDH system. 

Our focus changes away from the theoretical foundations 

and towards the practical application of ECC. We describe and 

develop the tools, methods and algorithms necessary for ECC, 

starting with the basic operations of modular exponentiation 

and the calculation of inverses over finite fields, and moving 

on to the more complicated tasks of finding modular square 

roots and the addition of points on the EC. Added to that we 

bring these individual pieces together to construct a functional 

ECDH system, and then discuss the limitations of this program 

and the MATLAB environment it was created in. Finally, we 

discuss how ECC is implemented in the real world, and its 

future use and standardization. 

 

II. THEORY OF ECC 

A. Elliptical curve cryptography 

 

 Elliptical curve cryptography (ECC) is a public key 

encryption technique based on elliptic curve theory that can be 

used to create faster, smaller, and more efficient cryptographic 

keys. ECC generates keys through the properties of the elliptic 

curve equation instead of the traditional method of generation 

as the product of very large prime numbers. The technology 

can be used in conjunction with most public key encryption 

methods, such as RSA, and Diffie-Hellman. According to 

some researchers, ECC can yield a level of security with a 

164-bit key that other systems require a 1,024-bit key to 

achieve. Because ECC helps to establish equivalent security 

with lower computing power and battery resource usage, it is 

becoming widely used for mobile applications. ECC was 

developed by Certicom, a mobile e-business security provider, 

and was recently licensed by Hifn, a manufacturer of 

integrated circuitry (IC) and network security products. RSA 

has been developing its own version of ECC. Many 

manufacturers, including 3COM, Cylink, Motorola, Pitney 

Bowes, Siemens and VeriFone have included support for ECC 

in their products. 

 

B. Cryptographic schemes  
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 Cryptographic schemes several discrete logarithm-based 

protocols have been adapted to elliptic curves, replacing the 

group with an elliptic curve and the elliptic curve Diffie–

Hellman (ECDH) key agreement scheme is based on the 

Diffie–Hellman scheme. The Elliptic Curve Integrated 

Encryption Scheme (ECIES), also known as Elliptic Curve 

Augmented Encryption Scheme or simply the Elliptic Curve 

Encryption Scheme. 

 The Elliptic Curve Digital Signature Algorithm (ECDSA) 

is based on the Digital Signature Algorithm. The deformation 

scheme using Harrison's p-adic Manhattan metric 

 The Edwards-curve Digital Signature Algorithm (EdDSA) 

is based on Schnorr signature and uses twisted Edwards curves 

The ECMQV key agreement scheme is based on the MQV key 

agreement scheme and the ECQV implicit certificate scheme. 

At the RSA Conference 2005, the National Security Agency 

(NSA) announced Suite B which exclusively uses ECC for 

digital signature generation and key exchange. The suite is 

intended to protect both classified and unclassified national 

security systems and information. Recently, a large number of 

cryptographic primitives based on bilinear mappings on 

various elliptic curve groups, such as the Weil and Tate 

pairings, have been introduced. Schemes based on these 

primitives provide efficient identity-based encryption as well 

as pairing-based signatures, signcryption, key agreement, and 

proxy re-encryption 

III. THEORETICAL BACKGROUND 

A. Fundamentals of Elliptic Curves 

Elliptic Curves are a type of algebraic curve with a general 

form described by the Diophantine equation. 

Andrew Wiles utilized them in his proof of Fermat's Last 

Theorem, and they are gaining popularity in the realm of 

cryptography for their security and efficiency over current 

cryptographic methods. They form a large part of US National 

Security Agency's (NSA) Suite B of cryptographic algorithms 

that will, over the next decade, replace those currently in use, 

such as RSA and the Diffie-Hellman Key Exchange [NSA, a]. 

An illustration of the superiority of ECC over older methods 

can be seen by looking at the comparative key size needed to 

ensure a similar level of security: where RSA would need a 

key size of 1024 bits, methods based on ECs would only 

require one of 160 bits [NSA, b]. 

The elliptic curve can be defined over many fields, ranging 

from the complex numbers C and the rationales’ Q to the real 

numbers IR and integers modulo p as covered in Sections 2.1 

and 2.2 [Silverman, 2005, pg. 100-104]. For any field K we 

can in general find a group (E(K),EB), that consists of pairs of 

elements in K that are solutions to Equation 1, plus an abstract 

point denoted by ∞ , which will be discussed further below. 

The EB operator that acts upon the elements of the group 

remains the same algebraically for each field, though the 

procedure for calculating it may vary slightly. 

 

B. Elliptic Curves over lR 

 

An elliptic curve over the field IR, denoted as E (IR), is the set 

of real solutions to equation 1, with a, b, c, dE IR and a# 0, i.e. 

the set {(x, y) E IR2 Iy2 = ax 3 + bx2 +ex+ d}, with the 

addition of an abstract point ∞  [Martin, 2006, pg. 5]. We must 

also state the condition that to be an elliptic curve Equation 1 

should have three distinct roots when y =0, either real or 

complex. This guarantees that the graph of the curve is non-

singular [Silverman, 2005, pg. 94], and hence a tangent line 

can be found at every point, the importance of which will 

become apparent later. 

    

  
Figure 1. Elliptic Curve Graphs [Vercauteren, 2005] 

 

 The graph produced by plotting the elliptic curve on the x 

and y axes has one of the following forms: From this elliptic 

curve we can construct an Abelian group by introducing the 

binary operation EE, called the addition law onE, which over 

lR!. can be given by a simple geometric construction [Martin, 

2006, pg. 8]. 

Definition 1: Binary operation over lR!. 

Let P1, P2 E E(JR), with P1 = (xl,Yl) and P2 = (x2,Y2)· 

Case One: 

      

  
Case Two: 

         

 
Case Three: 

If Case One and Two are not met, we then have 
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 To illustrate the geometrical interpretation of the addition 

law its best to first consider Case Three. Taking the two points 

H and P2, we connect them with a straight line. This line is 

guaranteed to intersect the elliptic curve at one other location - 

we denote this point as P3 1. We then reflect P3 1 along the x 

axis, and this gives us our answer P 3 . 

The gradient of this connecting line is m, and is calculated 

using different formulas depending on whether the points are 

distinct or identical. If the points are distinct the gradient is 

easily calculated using the standard high school method that 

leads to 'rise over run'. If the points are identical then we must 

instead use the tangent line at the point, the gradient of which 

is found by implicit differentiation;  

i.e.       

  
 Cases one and Two are then variations upon this idea. The 

point oo can be thought of as lying an infinite distance above 

(or below) the x axis, so if P2 is oo and P 1 is somewhere on 

the elliptic curve then the straight line connecting the two is 

considered vertical. P 3 1 is then directly below (or above) P1, 

and thus the reflection in the x-axis returns us to P1 • Case 

Two occurs when the two points have the same x value, 

resulting in P 3 being oo. 

 

C. Elliptic Curves over Zp 

 

 Despite the utility offered by elliptic curves over R!., it is 

only when one uses them over a finite field lF that they can 

become the basis for practical cryptographic schemes. This is 

because we work with finite comput-ers that are unable to 

accurately store and manipulate the elements of an infinite 

field such as (R), which has an infinite number of elements, 

some of which will be infinitely recuring decimals. We hence 

use finite fields, primarily 7/,P (integers modulo p), where pis 

a prime. 

 The Elliptic Curve given in Equation 1 now has the 

limitation that the coefficients a, b, c, d are integers reduced 

modulo p, as are the variables x and y. We then define our 

Elliptic Curve as the set of integer solutions modulo p to 

equation 1 with the addition of the oo point, and denote it as E 

(Zp)· 

Although the geometrical interpretation of EE that we used 

further no longer applicable, its algebraic definition can still be 

used, albeit with a slightly modified computational procedure. 

 

    

  
where

 

 
 As with the elliptic curves over lR, an abelian group can 

be formed by combining E (Zp) with the EE operator of 

Definition 2. Thus, as an abelian group, (.E (Zp), EE) have the 

following properties, stated without proof [Silverman, 2005, 

pg. 98]: 

 

 
While the group is not in general cyclic, a 

cyclic subgroup can be generated with the elements 

where P is any point on the 

EC. 

IV. EXISTING SYSTEM 

 

 Efficient cryptographic architectures are used extensively 

in sensitive smart infrastructures. Among these architectures 

are those based on stream ciphers for protection against 

eavesdropping, especially when these smart and sensitive 

applications provide life-saving or vital mechanisms. 

Nevertheless, natural defects call for protection through design 

for fault detection and reliability. In this paper, we present 

implications of fault detection cryptographic architectures 
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(Pomaranch in the hardware profile of European Network of 

Excellence for Cryptology) for smart infrastructures. In 

addition, we present low-power architectures for its nine-to-

seven uneven substitution box [tower field architectures in 

GF(33)] which has been proposed by Mehran Mzaffari-

kermani and Reza Azarderakhsh in the paper Reliable and 

Error Detection Architecture of Pomaranch for False Alarm 

Sensitive Cryptographic Application on 2015, Through error 

simulations, we assess resiliency against false-alarms which 

might not be tolerated in sensitive intelligent infrastructures as 

one of our contributions. We further benchmark the feasibility 

of the proposed approaches through application-specific 

integrated circuit realizations. Based on the reliability 

objectives, the proposed architectures are a step-forward 

toward reaching the desired objective metrics suitable for 

intelligent, emerging, and sensitive applications 

 

V. RESULTS 

 

A. MATLAB implementation of Elliptic Curve Diffie-Hellman 

  

The theoretical underpinnings of ECDH were introduced, 

and tools to implement this system were developed. We now 

put these two together to produce a working ECDH key 

exchange system. Note that the program has been written from 

the perspective of Alice, with the variable names 

corresponding to her part in the system. The full MATLAB 

program is listed below.  

The first step in the process is gathering the required 

data. This consists of the coefficients a, b, c and d that 

determine the Elliptic Curve, the prime p that specifies the 

finite field, and a point P on this curve. All this information is 

public, and is to be agreed upon by Alice and Bob. At this 

stage the program checks that the inputted p is indeed prime 

and, using isecptmod that the given point P lies on the Ellip-tic 

Curve. Alice and Bob then have to each choose a secret 

number, and this too is inputted into the program. The first of 

the main calculations can now take place. By using 

elcmultmod.m the program calculates A= aP, and outputs it to 

the console. Alice can then send this number to Bob.  

Once Alice receives B from Bob, she inputs it into the console. 

The program first checks for any transmission errors by 

verifying that the point lies on the elliptic curve, and then 

calculates the key K = aB. The key is then displayed on the 

console, and the program is complete.  

This implementation of ECDH has has been successfully 

tested with primes ranging up top= 19999423, or roughly 25 

bits. While this is nothing near the level 39 of secured in the 

real world circumstances, it is limited by certain aspects of 

MATLAB which will be discussed further To aid in the use of 

this program, a function has been created to locate a random 

point on the Elliptic Curve to be used as the puplic point P. 

This is performed by first generating a random x E Zp, then 

calculating the corresponding y value using sqrtmod. m. If no 

such y value exists, another x is generated, and the process 

repeated until one can be found.  

 

B. Simulation results 

 

 
Fig. 2 Encryption View of Alphabets in to matrix 

 

 
 

Fig. 3 Decryption View of matrix in to Alphabets 

 

Given the limitations of MATLAB discussed above, 

how is ECC implemented in the real world? The answer lies in 

the concept of arbitrary precision arithmetic, which allows 

calculations to be performed on integers of any length. There 

does not appear to be any packages to implement arbitrary 

precision 40  

 Arithmetic in MATLAB, but there are several such 

packages available for other languages like C/0++ and Java. 
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Hence it is in these languages that real world ECC systems are 

created.  

 

VI. CONCLUSIONS 

An Elliptic Curves Cryptography is success fully 

implemented in simulations by ECDH Key exchange system 

using MATLAB tool. We can develop an abelian group 

structure that is then used as the basis for cryptographic 

schemes such as the ECDH key exchange. The security of 

these schemes relies on the difficulty of solving the 

ECDLP.By this method an Encryption and decryption schemes 

were tested by encrypting the series of alphabets in to matrix 

form which lies over the elliptic curve then we have decrypted 

the Matrix by its Key. Over the course of this project I have 

created a limited but functional implementation of the ECDH 

key exchange system, using the MATLAB software package. 

This program allows two parties, Alice and Bob, to generate 

identical keys with which to then symmetrically encrypt a 

conversation. If their enemy Eve wishes to eavesdrop on the 

conversation she must first break the ECDLP. For the 

relatively small numbers used here this could be done easily, 

but for real-world programs using very large numbers this 

would be computationally infeasible. 

The limited nature of the implementation is due to the 

method by which MATLAB stores and works with large 

integers, and the apparent absence of any package that would 

allow MATLAB to deal with them differently. However, 

looking back at the work completed using a SOC Encryption 

and decryption will be tested over wireless medium. We can 

see that many of the required algorithms and methods already 

developed and discussed are independent of the language they 

are eventually implemented in. Thus if we wanted to create a 

more effective program capable of handling the large numbers 

that would ensure security we merely have to 'translate' our 

current methods into a superior language such as 0/C++, 

instead of starting again from scratch. 
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