
 

 

 
 
 

Privacy of Shared Data with Efficient User 
Revocation for Regenerating Code Based Cloud 

using Predicate Encryption with Partial Key 
 
  

Mrs. P. Sahila
1
 PG scholar, 

Department of Computer Science and 
Engineering SBM College of Engineering and 

Technology Dindigul, India  
p.sahila1987@gmail.com 

 
 

 
Abstract—With data storage and sharing services in the cloud, 

end users can easily change and share file/data as a group or 

team. To make sure shared data integrity can be certified 

publicly, users in the group need to compute signatures on all the 

blocks/chunks in shared data. Different blocks/chunks in shared 

data are generally signed by different users due to data 

modifications made by different users. For security constrains, 

once a user is revoked from the group or team, the blocks or 

chunks which were previously signed by this revoked user must 

be re-signed by an existing user. The straightforward method is 

which allows an existing user to download the corresponding part 

of shared data and re-sign it during user revocation, is inefficient 

due to the huge size of shared data in the cloud. This paper 

proposes a novel public auditing technique for the integrity of 

shared files/data with efficient user revocation. By utilizing the 

idea of cloud service re-signatures, this system allows the cloud to 

re-sign blocks on behalf of proxy during user revocation, so that 

proxy does not need to download and re-sign blocks. In addition, 

a public verifier is always able to audit the integrity of shared 

files without downloading the entire files from the cloud, even if 

some part of shared data has been re-signed by the cloud. Thus, 

this scheme can completely release data owners from online load. 

 
Index Terms—Cloud storage, regenerating codes, public audit, 

privacy preserving, authenticator regeneration, re-signature 

services, privileged, and user revocation. 

 
I. INTRODUCTION 

 
CLOUD storage is now attaining popularity because it 

provides an on-demand data outsourcing service with 

appealing benefits: release of the burden for storage 

management, widespread data access with location 

independence, and prevention of capital spending on 

hardware, software, and personal maintenances, etc., [1].  
It is noted that data owners mislay ultimate control over the 

fate of their outsourced data; thus, the correctness, 

accessibility and integrity of the data are being put at risk. On 

the one hand, the cloud service is usually faced with a broad 

range of internal/external adversaries, who would maliciously 

delete or corrupt users’ data; on the other hand, the cloud 

service providers may act dishonestly, attempting to hide data 

 

Mr.P.Rajapandi
2
 Assistant Professor, 

Department of Computer Science and Engineering  
SBM College of Engineering and Technology  

Dindigul, India 

Rajapandi.dgl@gmail.com 
 
 

 
loss or corruption and claiming that the files are still correctly 

stored in the cloud for reputation or monetary reasons. Thus it 

makes great sense for users to implement an efficient protocol 

to perform periodical verifications of their outsourced data to 

ensure that the cloud indeed maintains their data correctly. 

Many mechanisms dealing with the integrity of outsourced 

data without a local copy have been proposed under different 

system and security models up to now. The most significant 

work among these studies are the PDP (provable data 

possession) model and POR (proof of retrievability) model, 

which were originally proposed for the single-server scenario 

by Ateniese et al. [2] and Juels and Kaliski [3], respectively. 

Considering that files are usually striped and redundantly 

stored across multi-servers or multi-clouds, [4]–[10] explore 

integrity verification schemes suitable for such multi-servers 

or multi-clouds setting with different redundancy schemes, 

such as replication, erasure codes, and, more recently, 

regenerating codes.  
In this paper, we focus on the integrity verification problem 

in regenerating-code-based cloud storage, especially with 

the functional repair strategy [11]. Similar studies have been 

performed by Chen et al. [7] and Chen and Lee [8] separately 

and independently. [7] extended the single-server CPOR 

scheme (private version in [12]) to the regenerating code-

scenario; [8] designed and implemented a data integrity 

protection (DIP) scheme for FMSR [13]-based cloud storage 

and the scheme is adapted to the thin-cloud setting.1 However, 

both of them are designed for private audit, only the data 

owner is allowed to verify the integrity and repair the faulty 

servers. Considering the large size of the outsourced data and 

the user’s constrained resource capability, the tasks of auditing 

and reparation in the cloud can be formidable and expensive 

for the users [14]. The overhead of using cloud storage should 

be minimized as much as possible such that a user does not 

need to perform too many operations to their outsourced data 

(in additional to retrieving it) [15]. In particular, users may not 

want to go through the complexity in verifying and reparation. 

The auditing schemes in [7] and [8] imply the problem that 

users need to always stay online, which may impede its 

adoption in practice, especially for long-term archival storage. 

 
. 

                                 All Rights Reserved @ 2016 IJARMATE                                                                   192 



 

 

 

 

To fully ensure the data integrity and save the users’ 

computation resources as well as online burden, we propose a 

novel public auditing scheme for the regenerating-code-based 

cloud storage, in which the integrity checking and 

regeneration (of failed data blocks and authenticators) are 

implemented by a third-party auditor and a cloud re-signature 

services separately on behalf of the proxy. Instead of directly 

adapting the existing public auditing scheme [12] to the multi-

server setting, we design a novel authenticator, which is more 

appropriate for regenerating codes. Besides, we ―encrypt‖ 

the coefficients to protect data privacy against the auditor, 

which is more lightweight than applying the proof blind 

technique in [14] and [15] and data blind method in [16]. 

Specifically, our contribution can be summarized by the 

following aspects:  
• We design a novel homomorphic authenticator based 

on BLS signature [17], which can be generated by a 
couple of secret keys and verified publicly. Besides, 

it can be adapted for data owners equipped with low 

end computation devices in which they only need to 
sign the native blocks. 

 

• To the best of our knowledge, our scheme is the first 
to allow privacy-preserving public auditing for 
regenerating code-based cloud storage. The 
coefficients are masked by a PRF (Pseudorandom 
Function) during the Setup phase to avoid leakage of 

the original data. This method is lightweight and does 
not introduce any computational overhead to the 
cloud servers or TPA. 

 

• Our scheme completely releases data owners from 
online burden for the regeneration of blocks and 
authenticators at faulty servers and it provides the 
privilege to a re-signature service for the reparation. 

 

• Optimization measures are taken to improve the 
flexibility and efficiency of our auditing scheme; 
thus, the storage overhead of servers, the 
computational overhead of the data owner and 
communication overhead during the audit phase can 
be effectively reduced.  

• Our scheme is provable secure under random oracle.  
Moreover, we make a comparison with the state of 

the art and experimentally evaluate the performance 
of our scheme.  

The rest of this paper is organized as follows: Section II 

introduces some preliminaries, the system model, threat 

model, design goals and formal definition of our auditing 
scheme. 
 

 

II. SYSTEM MODEL AND PROBLEM STATEMENT 
 
A. System Model 
 

The system model for Regenerating-Code-based cloud 

storage as Fig.1, which involves four entities: the data owner, 

who owns large amounts of data files to be stored in the cloud; 

the cloud, which are managed by the cloud service provider, 

that provide storage service; the third party auditor 

(TPA),who has knowledge and capabilities to conduct public 

audits on the coded data/file in the cloud, the TPA is trusted 

and its audit results is unbiased for both data owners and cloud 

 

 

servers; and a re-signature services which regenerates 

authenticators and data blocks/chunks on the failed servers 

during the repair. In this the data owner is controlled in 

computational and storage resources compared to other objects 

and may become off-line even after the data upload procedure. 

To save resources as well as the online burden potentially 

brought by the periodic auditing and accidental repairing, the 

data owners resort to the TPA for integrity verification and 

delegate the reparation to the cloud re-generating services.  
The cloud Re-generating services regenerates the 

authenticators without downloading the revoked user’s data by 

using predicate partial key of the user. The privacy of 

outsourced data/file is maintained well and also they can 

overcome the security issues. The effectiveness of user 

revocation and computation and communication resources of 

existing users can be simply saved. This system achieves 

batch auditing where several outsourced auditing jobs from 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. The system model. 

 

 

different users can be done concurrently by the TPA. 
 

 

B. Problem Statement 
 

To fully guarantee the data reliability and save the users 

computation resources as well as online load, this paper 

propose a public auditing system for the redeveloping-code-

based cloud storage, in which the integrity checking and 

regeneration (of failed data/file blocks and authenticators) are 

implemented by a third-party auditor and a cloud re- signature 

services separately on behalf of the proxy. Instead of directly 

adapting the existing public auditing scheme to the multi-

server setting, they design a novel public authenticator, which 

is more appropriate for regenerating codes. Besides, they  
―encrypt‖ the coefficients to look after data privacy against 

the auditor.In addition, a public verifier is always able to audit 

the integrity of shared data without recovering the entire data 

from the cloud, even if some part of shared data has been re-

signed by the cloud. Thus, this scheme can completely release 

data owners from online burden.  
Cloud Computing makes these advantages more likeable 

than ever, it also brings new and exciting security threats 
towards user’s outsourced data/file. Since cloud service 

providers (CSP) are distinct administrative units, data 

outsourcing is actually resigning user’s ultimate switch over 

                                 All Rights Reserved @ 2016 IJARMATE                                                                   193 



 

 

 

 

the chance of their data. As a result, the accuracy of the data in 

the cloud is being set at threat due to the subsequent reasons. 

As users no longer substantially retain the storage of their file, 

outdated cryptographic primitives for the determination of 

data security protection cannot be directly accepted. Thus, 

how to efficiently confirm the exactness of outsourced cloud 

files/data without the local copy of data files becomes a big 

contest for data storage safety in Cloud Computing. Note that 

merely downloading the data/file for its integrity 

authentication is not a practical result due to the extravagance 

in I/O cost and transmitting the file/data through the network. 

Besides, it is repeatedly insufficient to identify the data 

corruption when retrieving the data/file, as it might be too late 

for progress the data/file loss or injury. Allowing for the huge 

size of the outsourced data/file and the user’s controlled 

resource capability the skill to audit the accuracy of the 

data/file in a cloud site can be difficult and expensive for the 

cloud users. Therefore, to entirely ensure the data security and 

protect the cloud users’ computation resources, it is of 

dangerous importance to allow public auditability for cloud 

records storage so that the user’s may recourse to a third party 

auditor (TPA), who has expertise and competencies that the 

users do not, to audit the outsourced data/file when required. 

Based on the audit outcome, TPA could issue an audit report, 

which would not only support users to estimate the risk of 

their contributed cloud data service area, but also be valuable 

for the cloud service provider to develop their cloud built 

service platform .In a word, allowing public threat auditing 

practices will play an significant role for this developing cloud 

economy to become fully recognized, where users will need 

ways to evaluate risk and gain faith in Cloud.  
The system can be précised as the following three aspects:  

• This paper suggests a novel public auditing 
mechanism by using the idea of cloud service re-
signatures; they permit the cloud to re-sign blocks or 
chunks on behalf of proxy in the course of user 
revocation. 

 

• So here this paper suggests a predicate encryption 
with partial public key to avoid the re-generating 
services from recovering the whole data. 

 

• To the best of the facts, this system is the first to 

support scalable and effective public auditing in the 
Cloud Computing. In particular, this system attains 
batch auditing where numerous delegated auditing 

jobs from diverse users can be performed 
simultaneously by the TPA.  
By implementing the above appliances the privacy of 

outsourced data is retained well and also they can overcome 

the security threats. So this mechanism can well improve the 

efficiency of user revocation and computation and 

communication resources of existing users can be simply 

saved. 

 

C. Design Goals 
 

To appropriately and efficiently check the integrity of 

data/file and keep the stored file/data available for cloud 
storage, this proposed auditing system should attain the 
following properties: 

 

 

• Public Auditability: To permit TPA to validate the 

intactness of the data/file in the cloud on demand 
without announcing additional online burden to the 
data owner. 

 

• Storage Soundness: To confirm that the cloud server 
can never pass the auditing technique except when it 
really manages the owner’s data/file intact. 

 

• Privacy Preserving: To confirm that neither the 

auditor nor the Re-signature services can develop 
users’ data/file content from the auditing and 
reparation procedure. 

 

• Authenticator Regeneration: The authenticator of the 

repaired blocks/chunks can be exactly regenerated in 
the nonappearance of the data owner. 

 

• Error Location: To confirm that the incorrect server 
can be quickly indicated when data exploitation is 
identified. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

D. Definitions of Our Auditing Scheme  
This auditing system consists of three procedures: Setup, 

Audit and Repair. Each technique holds polynomial-time 
algorithms as follows:  

Setup: The data owner preserves this procedure to initialize 

the auditing system. KeyGen(1κ) → (pk, sk): This 

polynomial-time algorithm is run by the data owner to set its 

public and undisclosed parameters by captivating a security 

parameter κ as input.  
Delegation(sk) → (x): This algorithm signifies the 

communication between the data owner and Re-signature 

services. The data owner provides partial secret key x to the 

proxy through a protected approach  
SigAndBlockGen(sk, F) → (φ, ψ, t): This polynomial time 

algorithm is run by the data owner and receipts the 

undisclosed parameter sk and the novel file F as input, and 

then outputs a coded block/chunks set , an authenticator set 

and a file tag.  
Audit:The cloud servers and TPA communicate with one 

another to take a arbitrary section on the blocks and verify the 

data intactness in this procedure. 

                                 All Rights Reserved @ 2016 IJARMATE                                                                   194 



 

 

 

 

Challenge(Finfo)→ (C):This algorithm is performed by the 

TPA with the information of the file Finfo as input and a 
challenge C as output.  

Proof Gen(C, φ, ψ)→(P): This algorithm is run by each 

cloud server with input challenge C, coded block set and 

authenticator set , then it outputs a proof P.  
Verify(P, pk, C)→(0, 1): This algorithm is run by TPA 

immediately after a proof is received. Taking the proof P, 

public parameter pk and the corresponding challenge C as 

input, it outputs 1 if the verification passed and 0 otherwise.  
Repair: In the absenteeism of the data owner, the Re-

signature services converses with the cloud servers during this 

process to repair the incorrect server detected by the auditing 

procedures. Thus, an issue arises when trying to fix how to 

regenerate authenticators for the repaired blocks/chunks. A 

direct solution, which is accepted to make data owners handle 

the regeneration.  
ClaimFor Rep(Fin f o) →(Cr): This algorithm is similar with 

the Challenge() algorithm in the Audit phase, but outputs a 

claim for repair Cr .  
GenFor Rep(Cr, φ, ψ) →(BA): The cloud servers run this 

algorithm upon receiving the Cr and finally output the block 
and authenticators set BA with another two inputs φ, ψ.  

BlockAndSigReGen(Cr, BA) →(φ', ψ', ⊥): The proxy implements this algorithm with the claim Cr 
and responses BA from each server as input, and outputs a new coded block set ψ' and authenticator set 
φ' if successful, outputting ⊥if otherwise. 

 

III. THE PROPOSED SCHEME 

 

In this section we start from an overview of our auditing 

scheme, and then describe the main scheme and discuss how 

to generalize our privacy-preserving public auditing scheme. 

Furthermore, we illustrate some optimized methods to 

improve its performance. 

 
A. Overview  

Although [7], [8] introduced private remote data checking 

schemes for regenerating-code-based cloud storage, there are 

still some other challenges for us to design a public auditable 

version. First, although a direct extension of the techniques in 

[2], [12], and [15] can realize public verifiability in the multi-

servers setting by viewing each block as a set of segments and 

performing spot checking on them, such a straightforward 

method makes the data owner generate tags for all segments 

independently, thus resulting in high computational overhead. 

Considering that data owners commonly maintains limited 

computation and memory capacity, it is quite significant for us 

to reduce those overheads. Second, unlike cloud storage based 

on traditional erasure code or replication, a fixed file layout 

does not exist in the regenerating-code-based cloud storage. 

During the repair phase, it computes out new blocks, which 

are totally different from the faulty ones, with high 

probability.  
Thus, a problem arises when trying to determine how to 

regenerate authenticators for the repaired blocks. A direct 
solution, which is adopted in [7], is to make data owners 

handle the regeneration. However, this solution is not practical 
because the data owners will not always remain online through 

 

 

the life-cycle of their data in the cloud, more typically, it 

becomes off-line even after data uploading. Another challenge 

is brought in by the proxy in our system model (see Section II-

C). The following parts of this section shows our solution to 

the problems above. First, we construct a BLS-based [17] 

authenticator, which consists of two parts for each segment of 

coded blocks. Utilizing its homomorphic property and the 

linearity relation amongst the coded blocks, the data owner is 

able to generate those authenticators in a new method, which 

is more efficient compared to the straightforward approach. 

Our authenticator contains the information of encoding 

coefficients to avoid data pollution in the reparation with 

wrong coefficients. To reduce the bandwidth cost during the 

audit phase, we perform a batch verification over all α blocks 

at a certain server rather than checking the integrity of each 

block separately as [7] does. Moreover, to make our scheme 

secure against the replace attack and replay attack, information 

about the indexes of the server, blocks, and segments are all 

embedded into the authenticator. Besides, our primitive 

scheme can be easily improved to support privacy-preserving 

through the masking of the coding coefficients with a keyed 

PRF.  
All the algebraic operations in our scheme work over the 

field GF (p) of modulo p, where p is a large prime (at least 80 

bits).
4 

 
B. Construction of Our Auditing Scheme  

Considering the regenerating-code-based cloud storage with 
parameters (n, k, ℓ, α, β), we assume β = 1 for simplicity. Let 

G and GT be multiplicative cyclic groups of the same large 

prime order p, and e : G × G → GT be a bilinear pairing map 
as introduced in the preliminaries. Let g be a generator of G 

and H(·) : {0, 1}
*
 → G be a secure hash function that maps 

strings uniformly into group G. Table I list the primary 
notations and terminologies used in our scheme description.  

Setup: The audit scheme related parameters are initialized 
in this procedure.  

KeyGen(1
k
 ) → (pk, sk): The data owner generates a 

random signing key pair (spk, ssk), two random elements x, y R 

← p and computes pkx ← g
x
 , pk y ← g

y
. Then the secret 

parameter is sk = (x, y, ssk) and the public parameter is pk = 
(pkx , pky, spk).  

Delegation(sk) → (x): The data owner sends encrypted x to 

the cloud code regeneration service using the regeneration 
service’s public key, then the regeneration service decrypts 

and stores it locally upon receiving. 
 

 

IV. REGENERATING-CODE-BASED CLOUD 
 
A. ADMIN MODULE 
 
Admin, User and Third party registration 
 

In this module, the Admin should register first. Then only 

he/she can be able to do user and group creation. For that 

admin needs to fill the information/details in the registration 

form. These information/details are maintained in a database.  
User wants to access the file/data which is maintained in a 
cloud he/she should register their details first. These details 

are maintained in a Database. Admin will provide the access 

                                 All Rights Reserved @ 2016 IJARMATE                                                                   195 



 

 

 

 

to users and user should register their details and they can 

login with their user id and password and they can use the 

cloud space.  
If a Third party auditor (TPA) wants to do some audit 

activity, they should register first. These details are maintained 

in a Database. Admin will provide the access to TPA and TPA 

should register their details and they can login with their user 

id and password and they can use the cloud space.  
Group Creation  

In this module, the admin is one who can create a new 

group and they could assign a group owner to someone from 

the user list. 

 

B. DATA SHARING AND RESIGN MODULE 
 

• Block Verification Module 

 

• Block Insertion Module 

 

• Block Deletion module 

 
Shared data is divided into a number of blocks. A user in 

the group can modify the chunks in shared file/data by 

performing an insert, delete or update action on the chunks. To 

protect the integrity of shared file/data, each chunk in shared 

data is enclosed with a signature, which is computed by one of 

the users in the group/team. Specifically, when shared file/data 

is firstly created by the novel user in the cloud, all the 

signatures on shared file/data are computed by the novel user. 

After that, once a user changes a chunks, this user also needs 

to sign the modified chunks/block with his/her own private 

key. By sharing file/data among a group/team of users, 

different chunks/blocks may be signed by different users due 

to alterations from different users. 

Block Verification Module  
User can check that the uploaded file is modified by any 

other user or not.  
Block Insertion Module  

In the block insertion module user can insert the new block 
in already shared data which is initially created by different 
user.  
Block Deletion module  

In this user can delete the block which is initially created by 

different user. 

 

C. USER REVOCATION AND BATCH AUDITING MODULE 
 

When a user in the group/team leaves or behaves badly, the 

group needs to be revoked the particular user. Generally, as 

the creator of shared data, the original user acts as the group 

boss and he can capable to revoke users on behalf of the 

team/group. Once a user is revoked, the signatures added by 

this revoked user turn out to be invalid to the team/group, and 

the blocks/chunks that were previously signed by this revoked 

user should be re-signed by a surviving user’s private key. So 

that the accuracy of the whole data/files can still be certified 

with the public keys of existing users only. 

 

D. CODE REGENERATION MODULE 
 

A public verifier is always can do audit the integrity of 
shared files/data without downloading the entire file/data from 

 

 

the cloud, even if some part of shared files/data has been re-

signed by the cloud. In the absence of the data owner, the 

cloud re-generating services interacts with the cloud to repair 

the wrong server detected by the auditing process. The cloud 

Re-generating services regenerates the authenticators without 

downloading the revoked user’s data by using predicate partial 

key of the user. So that the computation and communication 

resources of remaining users can be easily saved. This system 

achieves group auditing where multiple outsourced auditing 

jobs from various users can be done concurrently by the TPA.  
In this section we start from an overview of our auditing 

scheme mechanism is further extended to support batch 

auditing. This system is based on maintaining the revoked 

user’s information in, and then describe the main scheme and 

discuss how to generalize our privacy-preserving public 

auditing scheme.  
To improve the efficiency of verifying group auditing 

responsibilities, the cloud servers and also data owner instead 

it being handled by third party auditor. The future work is how 

to prove data/file freshness (prove the cloud possesses the 

latest version of shared data) while still stabilizing identity 

privacy.  
The system can be further enhanced by placing multiple 

servers so that the data can be retrieved even if a server fails 
and the performance can be improved. 
 

 

V. RELATED WORK 
 

The problem of remote data checking for integrity was first 

introduced in [26] and [27]. Then Ateniese et al. [2] and Juels 

and Kaliski [3] gave rise to the similar notions provable data 

possession (PDP) and proof of retrievability (POR), 

respectively. Ateniese et al. [2] proposed a formal definition 

of the PDP model for ensuring possession of files on untrusted 

storage, introduced the concept of RSA-based homomorphic 

tags and suggested randomly sampling a few blocks of the file. 

In their subsequent work [28], they proposed a dynamic 

version of the prior PDP scheme based on MAC, which allows 

very basic block operations with limited functionality but 

block insertions. Simultaneously, Erway et al. [29] gave a 

formal framework for dynamic PDP and provided the first 

fully dynamic solution to support provable updates to stored 

data using rank-based authenticated skit lists and RSA trees. 

To improve the efficiency of dynamic PDP, Wang et al. [30] 

proposed a new method which uses merkle hash tree to 

support fully dynamic data.  
To release the data owner from online burden for 

verification, [2] considered the public auditability in the PDP 

model for the first time. However, their variant protocol 

exposes the linear combination of samples and thus gives no 

data privacy guarantee. Then Wang et al. [14], [15] developed 

a random blind technique to address this problem in their BLS 

signature based public auditing scheme. Similarly, Worku et 

al. [31] introduced another privacy-preserving method, which 

is more efficient since it avoids involving a computationally 

intensive pairing operation for the sake of data blinding. Yang 

and Jia [9] presented a public PDP scheme, where the data 

privacy is provided through combining the cryptography 

method with the bilinearity property of bilinear pairing. [16] 

                                 All Rights Reserved @ 2016 IJARMATE                                                                   196 



 

 

 

 

utilized random mask to blind data blocks in error-correcting 

coded data for privacy-preserving auditing with TPA. Zhu et 

al. [10] proposed a formal framework for interactive provable 

data possession (IPDP) and a zero-knowledge IPDP solution 

for private clouds. Their ZK-IPDP protocol supports fully data 

dynamics, public verifiability and is also privacy-preserving 

against the verifiers. 

 

VI. CONCLUSION 
 

By means of suggesting privacy-preserving public auditing 

mechanism for re-generating code based data/file in the cloud, 

This scheme exploit cloud re-signature services to build a 

novel public authenticators, so that the revoked users 

information is also preserved by the cloud servers and also 

data owner instead of handled by third party auditor during 

corruptions. This scheme can well improve the efficiency of 

user revocation and computation and communication 

resources of current users can be easily saved. 
 

 

REFERENCES 

 
[1] M. Armbrust et al., ―Above the clouds: A Berkeley view of cloud 
computing,‖ Dept. Elect. Eng. Comput. Sci., Univ. California, 
Berkeley, 

CA, USA, Tech. Rep. UCB/EECS-2009-28, 2009. 

[2] G. Ateniese et al., ―Provable data possession at untrusted stores,‖ in  
Proc. 14th ACM Conf. Comput. Commun. Secur. (CCS), New York, NY, 
USA, 2007, pp. 598–609.  
[3] A. Juels and B. S. Kaliski, Jr., ―PORs: Proofs of retrievability for 
large files,‖ in Proc. 14th ACM Conf. Comput. Commun. Secur., 

2007, pp. 584–597.  
[4] R. Curtmola, O. Khan, R. Burns, and G. Ateniese, ―MR-PDP: 
Multiple-replica provable data possession,‖ in Proc. 28th Int. 

Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2008, pp. 411–420.  
[5] K. D. Bowers, A. Juels, and A. Oprea, ―HAIL: A high-availability and 
integrity layer for cloud storage,‖ in Proc. 16th ACM Conf. Comput. 

Commun. Secur., 2009, pp. 187–198.  
[6] J. He, Y. Zhang, G. Huang, Y. Shi, and J. Cao, ―Distributed data 
possession checking for securing multiple replicas in geographically 
dispersed clouds,‖ J. Comput. Syst. Sci., vol. 78, no. 5, pp. 1345–1358,  
2012.  
[7] B. Chen, R. Curtmola, G. Ateniese, and R. Burns, ―Remote data 

checking for network coding-based distributed storage systems,‖ in Proc. 

ACM Workshop Cloud Comput. Secur. Workshop, 2010, pp. 31–42.  
[8] H. C. H. Chen and P. P. C. Lee, ―Enabling data integrity protection in 

regenerating-coding-based cloud storage: Theory and implementation,‖ 

IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 2, pp. 407–416, 
Feb. 2014.  
[9] K. Yang and X. Jia, ―An efficient and secure dynamic auditing 

protocol for data storage in cloud computing,‖ IEEE Trans. Parallel 

Distrib. Syst., vol. 24, no. 9, pp. 1717–1726, Sep. 2013.  
[10] Y. Zhu, H. Hu, G.-J. Ahn, and M. Yu, ―Cooperative provable data 

possession for integrity verification in multicloud storage,‖ IEEE Trans. 

Parallel Distrib. Syst., vol. 23, no. 12, pp. 2231–2244, Dec. 2012. 

[11] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, ―A survey 
on network codes for distributed storage,‖ Proc. IEEE, vol. 99, no. 3, 

pp. 476–489, Mar. 2011. 

[12] H. Shacham and B. Waters, ―Compact proofs of retrievability,‖ in  
Advances in Cryptology. Berlin, Germany: Springer-Verlag, 2008, 
pp. 90–107.  
[13] Y. Hu, H. C. H. Chen, P. P. C. Lee, and Y. Tang, ―NCCloud: 
Applying network coding for the storage repair in a cloud-of-clouds,‖ in 

Proc. USENIX FAST, 2012, p. 21.  
[14] C. Wang, Q. Wang, K. Ren, and W. Lou, ―Privacy-preserving 
public auditing for data storage security in cloud computing,‖ in Proc. 

IEEE INFOCOM, Mar. 2010, pp. 1–9.  
[15] C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W. Lou, 
―Privacy-preserving public auditing for secure cloud storage,‖ IEEE 

 

 
Trans. Comput., vol. 62, no. 2, pp. 362–375, Feb. 2013.  
[16] C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou, ―Toward secure 
and dependable storage services in cloud computing,‖ IEEE Trans. 

Service Comput., vol. 5, no. 2, pp. 220–232, Apr./Jun. 2012.  
[17] D. Boneh, B. Lynn, and H. Shacham, ―Short signatures from the 
Weil pairing,‖ J. Cryptol., vol. 17, no. 4, pp. 297–319, 2004. 

[18] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K.  
Ramchandran, ―Network coding for distributed storage systems,‖IEEE 

Trans. Inf. Theory, vol. 56, no. 9, pp. 4539–4551, Sep. 2010. 

[19] T. Ho et al., ―A random linear network coding approach to multicast,‖ 

IEEE Trans. Inf. Theory, vol. 52, no. 10, pp. 4413–4430, Oct. 2006.  
[20] D. Boneh, D. Freeman, J. Katz, and B. Waters, ―Signing a linear 

subspace: Signature schemes for network coding,‖ in Public Key 

Cryptography. Berlin, Germany: Springer-Verlag, 2009, pp. 68–87. 

[21] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, ―Dynamic  
provable data possession,‖ in Proc. 16th ACM Conf. Comput. 

Commun. Secur., 2009, pp. 213–222.  
[22] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, ―Enabling public 
verifiability and data dynamics for storage security in cloud 
computing,‖  
[23] S. G. Worku, C. Xu, J. Zhao, and X. He, ―Secure and efficient privacy 

preserving public auditing scheme for cloud storage,‖ Comput. Elect. Eng., 
vol. 40, no. 5, pp. 1703–1713, 2013. 
 

                                 All Rights Reserved @ 2016 IJARMATE                                                                   197 



 

 

 


