

All Rights Reserved @ 2016 IJARMATE

186

Fault Tolerant SDN Controller: A Survey

S.Sujitha
#1

, K.Pallavi Priya
*2

, B.Pragathi
*3

#
Assistant Professor, Department of Information Technology,

*UG Scholar, Department of Information Technology

Thiagarajar College of Engineering, Madurai, Tamil Nadu, India.

Abstract—Software-Defined Networks is an

emerging technology for managing, controlling

and separating the network’s control logic from

the underlying routers and switches, and

introducing the ability to program network

operations. The Controller is the core of SDN

architecture, which performs the operations of a

network administrator. SDN Controller is

subject to Single Point of Failure; whereas there

is a fault in controller it will affect the whole

network performance. To enhance security in

SDN, innovative security services and

applications that are to be built upon SDN

capabilities. In this position paper we argue for

the need to build secure, fault tolerant and

dependable SDN controller by design. In

particular, we address the design of fault

tolerant SDN controller – with a focus on aspects

such as availability, performance, security and

dependability. We undertake a comprehensive

survey of recent works that apply to fault

tolerant SDN controller and identify promising

future directions that can be addressed by such

research and it also surveys latest developments

in this active research area of SDN.

Keywords: SDN Controller, Fault Tolerance,

Availability, Replication.

I. INTRODUCTION

Software-Defined Networking (SDN) [5, 6]

has emerged as the network architecture where the

control plane logic is decoupled from the

forwarding plane. It is a new approach for network

programmability, which refers to the ability to

control, change, and manage network behavior

dynamically through software via open interfaces

and proprietary defined interfaces. The SDN

framework enhances centralized control of data

path elements independently of the network

technology used to connect the network devices.

The centralized control embeds all the intelligence

and maintains a network-wide view of the data path

elements and the network links. This centralized

view makes the controller suitable to perform

network administration functions while allowing

easy modifications to the networking functions

through the centralized control plane. SDN provides

reusability, because a single high level program can

be implemented for multiple data-transfers. It

provides rapid innovation by eliminating the

dependence of hardware embedded services and it

also uses multiple controllers to provide reliability,

availability and handle the traffic-load in the

network.

II. SDN ARCHITECTURE

SDN architecture consists of three planes

namely, Application, Control and Data [7]. These
different planes are connected by different CPI’s
(Control Plane Interface).

Fig1. SDN Architecture

Application plane and Control plane are

connected using North bound APIs and it contains

applications like security system, IDS, monitoring
services, etc., and some other general applications

All Rights Reserved @ 2016 IJARMATE 187

which require access to network devices.

Applications connect to SDN controller agent via

A-CPI, provided by controller agent. Then

applications demand service of those resources

from SDN controller to transfer data. Control Plane

and Data Plane are connected through South bound

APIs, SDN controller then decides the efficient

logic for traffic flow and sends the control to data

plane for actual transfer of data and acknowledges

the application. The control plane is core element of

SDN Architecture. It contains SDN controller

which provides centralized control and it acts as a

network administrator. All programming logic

about packet forwarding, all network switching

decisions and network routing are programmed

dynamically inside SDN-Controller. This high level

program is then transferred to data plane. It is the

part that manipulates forwarding devices through a

controller to achieve the specific goal of the target

application. The high level control structures are

transferred from control plane to data plane using

secure transfer protocols like Open Flow, most

widely used SDN-Controller protocol for secure

control flow. Due to all these beneficial factors,

several cloud service providers and big data centres

are looking forward to SDN. We need to address

scalability, availability, and resilience when

building SDNs.

III. SECURITYTHREATS AND

VULNERABILITIES

SDN can significantly improve network

applicability and efficiency; it is exposed to new

threats that are more serious than those in

traditional networks. The various categories of

threats vectors [8] and attacks associated with SDN

layered framework is defined in SDN architecture

are the following,
1. Forged or Faked traffic flows

2. Attack on and vulnerabilities in switches
3. Attacks on control plane communications
with Northbound and Southbound APIs
4. Attacks on and susceptibilities in controllers
5. Lack of mechanisms to ensure trust between
the controller and management applications
6. Attacks on and weaknesses in administrative
stations
7. Lack of confidential resources for forensics
and remediation

Fig2. Security Threats

The seven threat vectors includes

information about it’s to SDN. Threat vectors 3, 4,

and 5 are specific to SDNs and are not present in

traditional networks. These threat vectors arise from

the separation of the control and data planes i.e the

logically centralized controller. The attacks on and

vulnerabilities in controllers is the severe threats to

SDN. Replication is one of the most possible

solutions for it to improve the dependability of the

system. It would detect, remove or mask abnormal

behaviour of SDN Controller.
There are different security attacks like Data

leakage, IP spoofing, unauthorized access, data
modification, denial-of-service, malicious

applications that are possible at different parts of

SDN framework.
Fault tolerant Controller is an essential part of

SDN, and this property should be addressed while
designing SDN architecture.

SDN fault tolerance covers different fault domain
[9]:
The Data Plane (Switch or link failure)

The Control Plane (failure of switch-
controller controller)
The Controller itself.

In the past years we are seeing a steady

increase in the number of SDN-based applications

being deployed in production networks. Google has

deployed SDN architecture to connect its data

centers across the world. This network has been in

deployment for 3 years, with success, and helps the

company to improve operational efficiency and

reduce costs significantly. In this paper, we survey

on the importance of SDN controller architecture

which is distributed, fault-tolerant, and strongly

consistent. The key element of this architecture is a

All Rights Reserved @ 2016 IJARMATE 188

data store that keeps relevant network and failure. It ensures that CORONET has up-to-date

applications state, proving that SDN applications information about the network status. The Route

function on a consistent network view, which planning module calculates multiple routing paths

ensures coordinated and correct behaviour, and based on the topology information. VLAN growing

consequently simplified application design. algorithm computes growing paths, which creates

 multiple link disjoint shortest routing paths using

 Dijkstra’s shortest path algorithm. When a link fails

 IV. RELATED SURVEY the link-disjoint property provides a better

 reliability by minimizing the number of affected

CORONET: Fault Tolerance for Software routing paths. The VLAN switch configuration

Defined Networks module configures multiple switch ports and the
 Traffic assignment module assigns host traffic to

The goal of this work [13] is to develop a fault routing paths. Currently, the algorithm assigns host

tolerant SDN architecture that can rapidly recover traffic to a routing path (VLAN ID) in a randomly

from faults and gradation to larger sized network. fashion. However, we envisage to incorporate a

This paper presents CORONET, an SDNfault- separate traffic monitoring module (as shown as a

tolerant system that recovers from multiple link dotted box in Figure 3), so that the module can

failures in the data plane. CORONET, COntroller perform dynamic load balancing.

based RObust NETwork, is a scalable and efficient The CORONET controller is built on top of

fault tolerant system. It has the following NOX [14], a platform that provides APIs for SDN

properties: applications which is used to interact with Open

• Fast recovery Flow switches. CORONET is consistent with Open

• Scalable to large networks Flow specification version 1.0.0 [15]. We evaluate

• Multipath routing our CORONET prototype using a virtual network

• Works with arbitrary networks topology emulator called Mininet [16], which is

• Single control plane used to generate customized virtual network
 topologies in a Linux machine. Thus CORONET
 only supports fault-tolerance for data plane failures.
 It simplifies packet forwarding and thus improving

 scalability.

 On the feasibility of a consistent and fault-

 tolerant data store for SDNs

 In this systems techniques [17] it is possible

 to build a strong consistent, fault-tolerant SDN

 controller framework which achieves a better

 Fig3. CORONET Architecture. performance. The core element in this architecture
 is too replicate controller which provides a highly-

 CORONET’s fig 3 use of VLAN available, strongly consistent data store. By using

dramatically simplifies packet forwarding, reducing the state of-the-art replication algorithm, we
the number of forwarding rules and thus improving integrate the Floodlight controller with a data store
scalability compared with a standard Open flow in the distributed controller architecture.

approach. SDN applications in CORONET can only The key idea of our controller fig 4.
specify logical paths implemented by VLANs. Architecture is to make the controller instances

While many existing Open flow applications coordinate with the data store where the relevant
directly control the packets and these applications state of the network is maintained in a consistent
could be rewritten using the CORONET way. To avoid any single point of failure, the data
framework. The Topology discovery module store is implemented with more no of servers
periodically collects topology information and (replicas), without affecting the consistency. State

receives asynchronous events upon link/switch machine replication (SMR) is one of the most

All Rights Reserved @ 2016 IJARMATE 189

popular techniques for implementing replicated data
store and it uses Paxos algorithm which ensures that

all updates in the data store are applied to all the

replicas in the same order.

not just as a traditional manner. When a controller is

disabled because of attacks, a backup one can be

immediately activated to take over the controlling

function. We design SDN architecture to resist the

attack on the control plane by BFT mechanism in

Cloud. In traditional SDN architecture, each switch

is controlled by a single controller [20].Now, we

propose to use multiple controllers link with other

fig 5 for confirming the update of flow tables in

each switch. First, each switch requires different

number of controllers, and each controller provides

services to multiple switches. Second, as the

Fig4.THE SHARED DATA STORE
CONTROLLER architecture

The architecture consists of a set of SDN

controllers connected to the switches in the

network. All decisions of the control plane are

based on Open Flow events triggered by the

switches and the data store backup controllers keep

monitoring this primary, as in the distributed

controller design. If the primary fails, one of the

backups which has the highest IP address takes the

role of primary and it inform to other controllers

and it also uses the data store for controlling the

network. It can deal with faults in the control plane

(the connection controller-switch) by having each

switch connected to several controllers (which is

ongoing work). In this paper they proposed a

distributed, highly available, strongly consistent

controller for SDNs

BYZANTINE-RESILIENT Secure Software-

Defined Networks with Multiple Controllers in

Cloud

The centralized control plane introduced by
SDN [18] imposes a great challenge for the network

security. In this paper, we present a secure SDN
structure, it employs multiple controllers for each

switch [19] and it is also managed by other devices,

Fig5. BYZANTINE architecture

Services are replicated and executed on

independent replicas. One replica act as the primary

in a view where the others are secondary (backups).

When the primary fails, the view will change. For

this they propose an algorithm, called requirement

first assignment (RQFA) algorithm, for solving the

CAFTS (controller assignment in fault-tolerant

SDN) problem. The algorithm works briefly as

follows.
1) The client sends a request to the primary

2) The primary sends the request to other replicas.
3) Replicas execute the request and it sends a reply
to the client.
4) The client waits for the reply from different
replicas with same result.

From the result, the architecture has little
impact on the network latency, and it provides

better security than general distributed controller.
The proposed algorithm performs higher efficiency

All Rights Reserved @ 2016 IJARMATE 190

than random assignment and to minimize the
number of controllers while satisfying the security
requirements of a given set of switches.

SMARTLIGHT: A Practical Fault-Tolerant

SDN Controller

In this paper, [10] they present a design of a

fault-tolerant controller, and materialize it by

proposing the architecture for small to medium-

sized networks. The proposed design guarantees a

smooth transition in case of failures and avoids the

need of an additional coordination service. To

ensure the network is controlled despite faults in

this controller, it is deployed with several controller

replicas. All switches therefore establish a

connection with all controllers. Several controllers

are deployed. Fig6. A single one in the network act

as primary, whereas the others are used as backups.

If the primary controller is crashed then the other

controllers can take over the role of primary by

using leader election. To enable this fault-tolerant

solution, we have algorithms for fault detection and

leader election [11].This ensures a smooth

transition to a new primary.

Fig6.SMARTLIGHTArchitecture.

When the primary fails, the new primary
takes over the role of the old primary and its first
action is to read the current state from the data store
.Because the network state in the data store is

always up-to-date then the new primary will have a

consistent view of the network and it ensures that it

has no single point of failure .A possible solution-

Paxos algorithm [12] for implementing the data

store as a Replicated State Machine (RSM) [20]. It

gives us the guarantees that a data store update will

be reflected in successive reads. It also ensures that

no update performed by the primary on a data store

will be lost after a failure Implementation of a fault-

tolerant controller – SMaRtLight. The SMaRtLight

architecture is presented in Fig6.
It includes additional aspects to implement

the data store in the coordination service. The

controllers maintain a local cache to avoid

accessing the shared data store. There is only one

active primary controller are used for accessing the

data store at any one time, because the cache does

not require synchronization technique. Only the

primary controller communicates with the data

store, reading from or writing to the application-

required tables. Simultaneously, it also updates its

cache.

V. CONCLUSION AND FUTUREWORK

SDN is considered as a promising solution

to meet the demands like, more convenient Internet

access, more bandwidth from users, and also more

dynamic management from service providers. SDN

will obtain more appropriate control of the

infrastructure to achieve more efficient

infrastructure resource utilization. In this paper, we

have surveyed a wide range of recent and state-of-

the-art projects in fault tolerant SDN Controller.

Moreover, we have provided a literature survey of

recent SDN researches in the control layer. As

future work, we will focus on the optimization of

the proposed distributed controller and on

modifying the Floodlight applications to make them
“data store-aware”. As the number of SDN

production networks increase the need for

dependability becomes essential. The key takeover

of this work is that dependability mechanisms have

their cost, and it is therefore an interesting challenge

for the SDN community to integrate these

mechanisms into scalable control platforms.

All Rights Reserved @ 2016 IJARMATE 191

REFERENCES

[1] T. Benson, A. Akella, and D. Maltz,
“Unraveling the complexity of network
management,” in Proceedings of the 6th USENIX
Symposium on Networked Systems Design and

Implementation, ser. NSDI’09, Berkeley, CA, USA,

2009.
[2] Press Release. “Hacking Habits” Survey Cites
Misconfigured Networks As The Main Cause Of

Breaches. Tufin Technologies, 31 August, 2010.
http://www.tufin.com/about-us/news-and-

media/pressreleases/ 2010/august-31,-2010/.
[3] R. J. Colville and G. Spafford. Configuration

Management for Virtual and Cloud Infrastructures.
Gartner Inc., 27 October, 2010.

http://www.gartner.com/id=1458131.
[4] N. McKeown, T. Anderson, H. Balakrishnan, G.

Parulkar, L. Peterson. Rexford, S. Shenker, and J.

Turner. Open Flow: Enabling Innovation in
Campus Networks. ACM SIGCOMM Computer

Communication Review (CCR), 38(2):69–74, 2008
[5] N. McKeon, “How SDN will Shape
Networking,” October 2011.[Online]. Available:
http://www.youtube.com/watch?v=c9-K5O qYgA
[6] S. Schenker, “The Future of Networking, and
the Past of Protocols, “October 2011. [Online].

Available:

http://www.youtube.com/watch?v=YHeyuD89n1Y
[7] W. Xia, Y. Wen, C.H. Foh, D. Niyato, H. Xie,
A survey on software defined networking,
Commun. Surv. Tutorials, IEEE PP (99) (2014).
[8]Towards Secure and Dependable Software-
Defined Networks, Diego Kreutz, Fernando M. V.

Ramos, Paulo Verissimo University of Lisbon,
Portugal, August 16, 2013.
[9] European Workshop on Software Defined
Networks.[Online].Available:
http://www.ewsdn.eu/previous/ewsdn12.html
[10] SMaRtLight: A Practical Fault-Tolerant SDN
Controller Fabio Botelho Alysson Bessani

Fernando M. V. Ramos Paulo Ferreira
LaSIGE/FCUL, University of Lisbon, Portugal.
[11] P. Hunt et al. Zookeeper: Wait-free
coordination for Internet-scale services. In USENIX
ATC, 2010.
[12] L. Lamport. The part-time parliament. ACM
Trans. Computer Systems, 16(2):133–169, May
1998.

[13] CORONET: Fault tolerance for software
defined networks. In IEEE ICNP, 2012. F. Botelho,
F. Ramos, and A. Bessani.
[14] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M.
Casado, N. McKeown, and S. Shenker. NOX:

towards an operating system for networks. ACM,
July 2008.
[15] Open Flow Specification v1.0.
http://www.openflowswitch.org/documents/openflo
w-spec-v1.0.0.pdf
[16] B. Lantz, B. Heller, and N. McKeown. A
network in a laptop: Rapid prototyping for

software-defined networks (at scale!). In Proc.
HotNets, Oct. 2010.
[17] On the feasibility of a consistent and fault-
tolerant data store for SDNs. In EWSDN, Oct.
2013. F. Botelho, A. Bessani, and F. Ramos.
[18] Byzantine-Resilient Secure Software-Defined
Networks with Multiple Controllers in Cloud.He Li,

Peng Li, Song Guoand Amiya Nayak, IEEE, Oct
2013.
[19] J. C. Mogul, J. Tourrilhes, P. Yalagandula, P.
Sharma, A. R. Curtis, and S. Banerjee, “Devoflow:
Cost-effective flow management for high
performance enterprise networks,” in Proceedings

of the 9
th

ACM SIGCOMM Workshop on Hot

Topics in Networks, ser. Hotnets-IX. New York,
NY, USA: ACM, 2010
[20] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson,J. Rexford, S. Shenker, and
J. Turner, “Open flow: enabling innovation in
campus networks,” SIGCOMM Comput.
Commun.Rev. vol. 38, no. 2, pp. 69–74, Mar. 2008.
[21] Floodlight Controller. http://goo.gl/ZlLXdO.
[22] Z. Cai, A. L. Cox, and T. E. N. Maestro, “A

system for scalable open flow control,” Technical

Report TR10-08, Rice University, Tech. Rep., 2010.

