
ISSN (ONLINE): 2454-9762

ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com
International Journal of Advanced Research in Management, Architecture, Technology

and Engineering (IJARMATE) Vol. 2, Special Issue 12, April 2016.

All Rights Reserved @ 2016 IJARMATE 135

 Robust Approach for Secure Multicast Communication using

Batch Balanced Technique

J.Punitha Nicholine*

*
Mrs. J.Punitha Nicholine, Assistant Professor, Department of Computer Science and Engg, PSNA college Of

Engineering and Technology & Dindigul

 Email Id:infantia.1@gmail.com

Abstract—A secure multicast communication is

important for applications such as pay-per-view

and secure videoconferencing. A key tree

approach has been proposed by other authors to
distribute the multicast group key in such a

way that the rekeying cost scales with the logarithm

of the group size for a join or depart request.

The efficiency of this key tree approach

critically depends on whether the key tree

remains balanced over time as members join or

depart. In this paper two Merging Algorithms

suitable for batch join requests. To additionally

handle batch depart requests, we extend these

two algorithms to a Batch Balanced Algorithm.

Simulation results show that our three algorithms

not only maintain a balanced key tree, but their

rekeying costs are lower compared with those of
existing algorithms.

Keywords— Pay-per-view, group key management,

secure group communication, rekeying.

1. INTRODUCTION

INTERNET Protocol (IP) multicast allows a sender

to transmit a single copy of some data, with
network elements such as routers making copies

as necessary for the receivers. This approach

reduces sender-processing overhead and network

bandwidth usage.

Before these group-oriented multicast applications

can be successfully deployed, access control

mechanisms must be developed such that only
authorized members can access the group

communication. The only way to ensure

controlled access to data is to use a shared group

key, known only to the authorized members, to

encrypt the multicast data. As group membership

might be dynamic, this group key has to be

updated and redistributed securely to all authorized

members whenever there is a change in the

membership in order to provide forward and

backward secrecy. Forward secrecy means that a
departing member cannot obtain information

about future group communication and backward

secrecy means that a joining member cannot

obtain information about past group

communication.

The rekeying cost of the key tree approach

increases with the logarithm of the group size for a
join or depart request. The operation for

updating the group key is known as rekeying and the

rekeying cost denotes the number of messages

that need to be disseminated to the members in

order for them to obtain the new group key.

Individual rekeying, that is, rekeying after each join

or depart request, has two drawbacks .First, it is

inefficient since each rekey message has to be

signed for authentication purposes and a high rate

of join/depart requests may result in performance

degradation because the signing operation is

computationally expensive. Second ,if the delay in

a rekey message delivery is high or the rate of
join/depart requests is high, a member may need a

large amount of memory to temporarily store the

rekey and data messages before they are

decrypted. In this scheme, the GC does not

perform rekeying immediately; instead, it

consolidates the total number of joining and

departing members during a time period before
performing the rekeying.

 The efficiency of the key tree approach

critically depends on whether the key tree is

balanced . A key tree is considered balanced if

the distance from the root to any two leaf nodes

differs by not more than 1. For a balanced key

tree with N members, the height from the root to any

leaf node is log k N, where k is the outdegree of the

key tree, but, if the key tree becomes

unbalanced, then the distance from the root to a
leaf node can become as high as N. In other

words, this means that a member might need to

ISSN (ONLINE): 2454-9762

ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com
International Journal of Advanced Research in Management, Architecture, Technology and

Engineering (IJARMATE) Vol. 2, Special Issue 12, April 2016.

All Rights Reserved @ 2016 IJARMATE 136

perform N - 1 decryptions to get the

group key.

This paper propose two Merging Algorithms

suitable for batch join events for combining

subtrees together. These two Merging Algorithms

not only balance the key tree, but have lower

rekeying costs compared to existing algorithms.

In other words, our Merging Algorithms allow

all members in the multicast session to have

similar storage and decryption requirements

during each rekeying operation. Having a

balanced key tree greatly benefits mobile devices

since they generally have limited storage and

computation power.

Fig1. Logical key tree

Reducing the number of decryptions needed by

the mobile devices can help to conserve the

battery power. In order to additionally handle

departing members, we extend these two

Merging Algorithms to a Batch Balanced

Algorithm where the tree height adapts to the

change in the group membership. However, this
requires a reorganization of the group members

in the key tree. Simulation results show that our

Batch Balanced Algorithm performs significantly

better than existing algorithms when the number

of joining members is greater than the number of

departing members or when the number of

departing members is around N/k, with no

joining members. For similar numbers of joining

and departing members, our Batch Balanced

Algorithm achieves the same performance as that of

existing algorithms.

2. BACKGROUND

2.1 Key Tree Approach
In a typical key tree approach as shown in Fig.1,

there are three different types of keys: Traffic

Encryption Key (TEK), Key Encryption Key

(KEK), and individual key. The TEK is also

Known as the group key and is used to encrypt

multicast data. To provide a scalable rekeying,

the key tree approach makes use of KEKs so that the

rekeying cost increases logarithmically with the

group size for a join or depart request. An

individual key serves the same function as KEK,

except that it is shared only by the GC and an

individual member.

Fig. 1, K0 is the TEK, K1 to K3 are the

KEKs, and K4 to K12 are the individual keys.

The keys that a group member needs to store are

based on its location in the key tree in other

words, each member needs to store 1 + logk N

keys when the key tree is balanced. For example, in

Fig. 1,member U1 knows K0, K1, and K4 and

member U7 knows K0, K3, and K10. The GC

needs to store all of the keys in the key tree.

To uniquely identify each key, the GC assigns

an ID to each node in the key tree. When a

member is removed from the group, the GC must

change all the keys in the path from this

member’s leaf node to the root to achieve

forward secrecy. All the members that remain in the

group must update their keys accordingly. For

example, suppose member U9 is departing in Fig. 1.
Then, all the keys that it stores (K0 and K3) must be

changed, except for its individual key. Let {x}y

denote key x encrypted with key y and x0 denote the

new version of key x. Then, the GC needs to

multicast the rekey messages {K3’}K10,

{K3’}K11, {K0’}K1, {K0’}K2, and {K0’}K3’ to

the members, giving a total of five encrypted keys.

If backward secrecy is required, then a join

operation is similar to a depart operation in that

the keys that the joining member receives must

be different from the keys previously used in the

group. The rekeying cost for a single joining

member is 2 logk N messages when the key tree is

balanced. Suppose member U9 is joining the

group. Then, the GC needs to multicast the

following rekey messages to the members:

{K3’}K3,{K3’}K12,{K0’}K0, and {K0’}K3’. The

efficiency of the key tree approach critically

depends on whether the key tree remains

balanced. For a balanced key tree with N leaf

nodes, the height from the root to the any leaf

node is logk N. However, if the key tree

becomes unbalanced, the distance from the root

to a leaf node can become as high as N.

2.2 Batch Rekeying
Batch rekeying is when join/depart requests are

collected during a time interval called the rekey

interval and are rekeyed together It also reduces

ISSN (ONLINE): 2454-9762

ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com
International Journal of Advanced Research in Management, Architecture, Technology and

Engineering (IJARMATE) Vol. 2, Special Issue 12, April 2016.

All Rights Reserved @ 2016 IJARMATE 137

the number of group rekey events.

Furthermore, the number of rekey messages that

need to be multicast to the group can be much

smaller than the number of rekey messages that

would be generated if each membership change

were processed individually due to the

overlapping in paths from the leaf nodes to the

root.

2.3 Related Work
Some notations and definitions are used in this

paper. The term ST to indicate a subtree. The

“minimum height” is used to mean the minimum

number of levels in a tree or subtree from the root to

any leaf node. Similarly, the “maximum height”

is used to mean the maximum number of levels in a

tree or subtree from the root to any leaf node.

The following are the variables that are defined in

this paper:

Marking Algorithms have been proposed to update

the key tree and generate, at the end of each

rekey interval, a rekey subtree with a collection of

join and depart requests.

In Marking Algorithm1, there are four cases to

consider. If J = D, then all departing members

are replaced by the joining members. If J <D, then
we pick the J shallowest leaf nodes from the

departing members and replace them with the

joining members. By the term “shallowest node,”

we mean the leaf node of minimum height in our

terminology. If J >D and D = 0, then the

shallowest leaf node is selected and removed.

This leaf node and the joining members form a
new key tree that is then inserted at the old

location of the shallowest leaf node. Next, if J >D

and D > 0, then all departing members are replaced

by the joining members. The shallowest leaf node

is selected from these replacements and removed

from the key tree. This leaf node and the extra

joining members form a new key tree that is

then inserted at the old location of the removed

leaf node. Last, the GC generates the necessary

keys and distributes them to the members.

In Marking Algorithm 2, there are only three

cases to consider for this Marking Algorithm.

Two of them, J =D and J <D, are similar to the

one mentioned above, except that the nodes of

departing members that are not replaced by the

joining members are marked as null nodes. For

J >D, all departing members are replaced by the

joining members. If there are null leaf nodes in the

key tree, then they are also replaced by the

joining members, starting from the null nodes with

the smallest node ID. If there are still extra joining

members, then the member with the smallest

node ID is removed and it is inserted as a child,

together with k -1 joining members at its old

location. The next smallest node ID member is

selected if there are more joining members. This

insertion continues until all of the joining members

have been inserted into the key tree. As before, the

GC distributes the new key to the members.

Balanced Batch Logical Key Hierarchy

(LKH),has also been proposed to alleviate the

inefficiency in Marking Algorithm 1 but this

algorithm is only suitable for a binary key tree

(k=2) and the author does not offer a solution for

a key tree with other outdegrees.

3. BATCH REKEYING ALGORITHM
This paper propose two Merging Algorithms to

combine subtrees together in a way that is

suitable for batch join events. To handle all cases

such as depart or both join and depart requests,

we then extend these two Merging Algorithms

into a Batch Balanced Algorithm.

The two Merging Algorithms are used to

combine two subtrees: ST_A and ST_B.

Assume that ST_A has a greater height than

ST_B and both subtrees are of the same

outdegree k.

3.1 Merging Algorithm 1
This algorithm is only used when the difference

in the maximum height between the two subtrees

ST_A and ST_B is greater than or equal to 1.

The criteria for choosing Merging Algorithm 1

are when the difference between HMAX ST A

and HMIN ST B is greater than 1 and when the

difference between HMAX ST A and HMAX ST B

is greater than or equal to 1. If both of these

conditions are fulfilled, then the algorithm

calculates HINSERT . The following steps are

then performed: Step 1. For k > 2, the algorithm

searches for an empty child node in ST_A at
either level HINSERT or level HINSERT-1. If

HINSERT=0, then levels 0 and 1 are searched.

ISSN (ONLINE): 2454-9762

ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com
International Journal of Advanced Research in Management, Architecture, Technology and

Engineering (IJARMATE) Vol. 2, Special Issue 12, April 2016.

All Rights Reserved @ 2016 IJARMATE 138

If such a node exists, then the

algorithm inserts ST_B as the child of that

particular key node. Step 2. If an empty node is not

found in Step 1, mark a suitable key node in

ST_A at level HINSERT for insertion as follows:

If HINSERT =0, then a suitable key node at level 1

is marked. The marked key node is given by the

one with the greatest number of leaf nodes at

level HMIN_ST_A.Step 3. For k > 2, when an

empty node is not found in Step 1, the

algorithm searches the root of ST_B for an

empty node. If this exists, then the algorithm

inserts the marked key node from Step 2 as the

child of ST_B and inserts ST_B at the old location

of the marked key node. Step 4. For k = 2 or k

> 2, if Steps 1 to 3 have not inserted ST_B into

ST_A, then the algorithm creates a new key node at

the old location of the marked key node(Step 2)

and inserts the marked key node and ST_B as its

children. Finally, the GC may need to multicast

at most one update message to inform the

affected members.

3.2 Merging Algorithm 2
This algorithm is only used for combining

subtrees whose height difference is 0 or equal to 1.

The criteria for using Merging Algorithm 2 are

when the difference between HMAX_ST_A and

both HMIN_ST_B and HMAX_ST_B is 0 or

equal to 1. The algorithm performs the following

steps: Step 1. For k > 2, the algorithm searches the

root of ST_A for an empty child key node. If

it exists, then the algorithm inserts ST_B at the

empty child key node. Step 2. For k = 2 or when

Step 1 is not valid for k > 2, the algorithm creates a

new key node at the root and inserts ST_A and

ST_B as its children.

The GC needs to multicast at most one update

message to all existing members. After updating

the affected node IDs, the members can identify

the set of keys that they need in the rekey

messages.

3.3 Batch Balanced Algorithm
Two Merging Algorithms can be extended to

produce an algorithm that we call Batch

Balanced Algorithm that encompasses both

joining and departing members.

There are six steps in our Batch Balanced

Algorithm. 1. Identify and mark all key nodes that

need to be updated. These key nodes are on the
ancestor paths from each departing member to the

root. 2. Remove all marked key nodes. After

removal, there are only two types of element

left: the remaining subtrees and the joining

members. 3. Classify all siblings of the departing

members as joining members since all of the

KEKs that they store cannot be used. 4. Group the

joining members into one or many subtrees,

each with k members. If there are remaining

members left, then they are grouped into another

subtree of between 2 and k - 1 members unless

there is only one member left. If there is only one

member left, then treat it as a single-node

subtree. 5. Starting from the subtree with the

minimum height, compare it with another subtree

with the next minimum height and if the

Merging Algorithm 1 criteria are met, combine them

using Merging Algorithm 1, else combine them

using Merging Algorithm 2. Repeat this process

until there is only one key tree. 6. Construct the

update and rekey messages and multicast them to

the members.

Assume that we have a key tree with 16 members.

Suppose members U11 and U15 are departing from

the group and six new members, U17 to U22, are

joining the group. Do the steps up to 4.These usable
subtrees ST1 to ST7 are identified as shown in Fig

2. Now follow the steps 5 and 6.Finally, the last two

subtrees form a single key tree, as shown in Fig 3.

The GC sends out the update messages to inform the

members of their new location. Those members that

need to receive the update messages are U12 and the

members in ST2 and ST3, which means that a total

of three update messages is needed. In this example,

we assume that member U16 and subtree ST1 are

left intact at their old location. If their locations are

changed, then two extra update messages are

needed. For ST4, ST5, and ST6, no update message

is needed since the members in the subtrees are

newly joining members. At the same time, the GC

can multicast the rekey messages to the

members.The total rekeying cost is 20 messages. If

we use Marking Algorithm 1 or Marking Algorithm

2 in a similar situation, then Marking Algorithm 1

has the same rekeying cost, but it ends up with an

unbalanced key tree. Although Marking Algorithm 2

can maintain a balanced key tree, it needs 28 rekey

messages. From this, we can see that reorganizing

the group members leads to saving on rekeying

costs.

3.4 Update Messages
In order for the members to identify the keys that
they need after the key tree has been

reorganized, the GC needs to inform the members

ISSN (ONLINE): 2454-9762

ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com
International Journal of Advanced Research in Management, Architecture, Technology and

Engineering (IJARMATE) Vol. 2, Special Issue 12, April 2016.

All Rights Reserved @ 2016 IJARMATE 139

of their new location. An update message

consists of the smallest node ID of the usable key

tree m and the new node ID m’.with the new node

ID m’, the members can update the remaining keys

m0 by using the following function:

f(m0) = kx(m’ –m) +m0;

where x denotes the level of the usable key tree.

4. PERFORMANCE EVALUATION

This section shows the performance of our proposed

algorithms and compare them with the Marking

Algorithms. We consider four performance metrics:

rekeying cost, update cost, minimum and maximum
height in the key tree, key storage. The rekeying

cost denotes the total number of rekey messages that

need to be sent to all authorized group members in

order for them to learn the new group key.

 Fig.2

Fig.3

A higher rekeying cost means that more bandwidth

is needed for the transmission. Although Marking

Algorithm 2 adopts the User-Oriented Key

Assignment Algorithm (UKA) where all of the

encryptions for a member are assigned in a single

packet, we ignore the UKA when we calculate the

rekeying costs since it leads to a significant number

of duplications in rekey messages. Instead, we just

calculate the total number of rekey messages that

are needed without any duplication. The update cost

denotes the total number of update messages that

need to be sent to all affected members after the key

tree has been reorganized in order for them to

identify the keys that they need. As for the

minimum and maximum height, they affect the

members’ key storage and, thus, the number of

decryptions needed by each member and may even

increase the rekeying costs, too. Last, the key

storage denotes the number of keys each member

need to store.

4.1 Merging Algorithm Performance Evaluation:
Some simulations to compare the performance of

both of our Merging Algorithms with existing work.

4.1.1 Rekeying Cost:

In Fig4, we can see that Marking Algorithm 2 has

the highest rekeying cost. This is because the joining

members are inserted one by one at each leaf node,
which affects the paths from the affected leaf nodes

to the root. As the number of joining members

increases, the number of affected nodes increases

significantly. On the other hand, other three

algorithms have similar rekeying costs since they try

to minimize the number of affected nodes. Marking

Algorithm 1 minimizes the rekeying costs by

placing the new subtree, which consists of joining

members and one removed member on the

shallowest height, at the old location of the removed

member. Merging Algorithm 1 inserts the new

subtree consisting of the joining members into one

of the key nodes in the key tree at a location that

depends on the number of the joining members;

thus, as the number of joining members increases,

the number of affected nodes is reduced since the

key node selected for insertion gets closer to the

root. For Merging Algorithm 2, a new root is created

with the existing subtree and the new subtree

consisting of the joining members, which are

inserted as its children.

4.1.2 Update Cost
Of the four algorithms, only Marking Algorithm2

does not need to distribute update messages to the

members. Marking Algorithm 1 needs to send one

update message to inform the removed leaf node of
its new location. Similarly, both Merging

Algorithms need to send out one update message to

ISSN (ONLINE): 2454-9762

ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com
International Journal of Advanced Research in Management, Architecture, Technology and

Engineering (IJARMATE) Vol. 2, Special Issue 12, April 2016.

All Rights Reserved @ 2016 IJARMATE 140

inform the affected members of the newly

created node.

Fig. 4 Batch join rekeying costs

4.1.3 Minimum and Maximum Height

Fig 5 shows the maximum height of the key tree

after the joining members have been inserted into
the key tree for all algorithms. Only Marking

Algorithm 2 and Merging Algorithm 2 maintain at a

fixed height, regardless of the number of joining

members. Marking Algorithm 2 alleviates the

inefficiency of Marking Algorithm 1 by inserting

the joining members one by one at each leaf node,

whereas Merging Algorithm 2 creates a new root

and inserts the existing key tree and the joining

member key tree as its children. Merging Algorithm

1 has the same performance as Marking Algorithm 2

and Merging Algorithm 2 when the number of

Fig 5.Maximum height of the key tree

Fig 6.Maximum difference in height

joining members is less than or equal to half the

group size. However, once the number of joining

members exceeds half the group size, the maximum

height increases by 1. Fig 6. shows the maximum

difference in height of the key tree, which indicates

whether the key tree is balanced. The maximum

difference in height for Marking Algorithm 1

increases considerably as the number of joining

members increases. Similarly, our Merging

Algorithm 2 is not a balanced key tree when the

number of joining members is less than half the

group size and it only maintains a balanced key tree

when the number of joining members is greater than

or equal to half the group size. As for our Merging

Algorithm 1, it maintains a balanced key tree when

the number of joining members is less than or equal

to half the group size. The difference in height in

Merging Algorithm 1 increases by 1 once the

number of joining members exceeds half the group

size since the child of the root is selected for the

insertion. Marking Algorithm 2 is the only

algorithm that creates a balanced key tree,

regardless of the number of joining members.
However, this comes with the drawback of the high

rekeying costs.

4.1.4Key Storage:

It shows the minimum and maximum number of

keys that a member needs to store for the four

algorithms for batch join events. the maximum

number of keys that a joining member needs to store

in Marking Algorithm 1 is dependent on the number

of joining members at that particular interval. A

large number of joining members results in a great

difference in key storage among members. Marking

Algorithm 2 does not suffer from the storage

inefficiency as in Marking Algorithm 1, but it comes

at the expense of the large rekeying costs.

5. FUTURE WORK:

To implement revised two phase batch rekeying

algorithm, The batch rekeying with variable interval

is more suitable to the network than that with fix

interval, because the batch rekeying with variable

interval leads to the steady rekey traffic and cost of

rekey . Keeping this point in mind, we can apply

variable batch rekey interval for rekeying. It

minimizes the number of key update messages. In

order to reduce the computation we are going to

separate the mobile and non mobile nodes in a tree
and if there is scalable tree then centralized server is

ISSN (ONLINE): 2454-9762

ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com
International Journal of Advanced Research in Management, Architecture, Technology and

Engineering (IJARMATE) Vol. 2, Special Issue 12, April 2016.

All Rights Reserved @ 2016 IJARMATE 141

assigned in the mobile node side to

perform the operations.

REFERENCES:
[1] S.E. Deering, “Host Extensions for IP

Multicasting,” IETF RFC 1112, Aug. 1989.

[2] S. Paul, Multicast on the Internet and Its

Applications. Kluwer Academic, 1998.

[3] U. Varshney, “Multicast over Wireless

Networks,” Comm. ACM, vol. 45, no. 12, pp. 31-37,

Dec. 2002.

[4] U. Varshney, “Multicast Support in Mobile

Commerce Application,” Computer, vol. 35, no. 2,

pp. 115-117, Feb. 2002.

[5] H. Harney and C. Muckenhirn, “Group Key

Management Protocol (GKMP) Architecture,” IETF

RFC 2094, July 1997.

 [6] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M.

Noar, and B. Pinkas, “Multicast Security: A

Taxonomy and Efficient Constructions,” Proc. IEEE

INFOCOM, vol. 2, pp. 708-716, Mar. 1999.

[7] A. Ballardie, “Scalable Multicast Key

Distribution,” IETF RFC 1949, 1996.

[8] X.S. Li, Y.R. Yang, M. Gouda, and S. Lam,
“Batch Rekeying for Secure Group

Communications,” Proc. 10th Int’l WWW Conf.,

May 2001.

[9] X.B. Zhang, S. Lam, D.Y. Lee, and Y.R. Yang,

“Protocol Design for Scalable and Reliable Group

Rekeying,” IEEE/ACM Trans. Networking, vol. 11,

pp. 908-922, Dec. 2003.

[10] H. Harney and C. Muckenhirn, “Group Key

Management Protocol (GKMP) Architecture,” IETF

RFC 2094, July 1997.

