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AbstractAs new data and updates are 

constantly arriving, the results of data
applications become stale and obsolete over

Incremental processing is a promising approach 

to refreshing mining results. It utilizes previously 

saved states to avoid the expense of re

computation from scratch. In this paper, we 

propose i2 MapReduce, a novel incremental 

processing extension to MapReduce, the most 

widely used framework for mining big data. 

Compared with the state-of-the

Incoop, i2 MapReduce (i) performs key

level incremental processing rather than task level 

re-computation, (ii) supports not only one

 
Today amount of digital data is being accumulatedin 

many important areas, including e

socialnetwork, finance, health care, education, and 

environment.It has become increasingly popular to 

mine such big data inorder to gain insights to help 

business decisions or to providebetter personalized, 

higher quality services.Inmany situations, it is 

desirable to periodically refresh themining 

computation in order to keep the mining resultsup

date. For example, the PageRank algorithm

ranking scores of web pages based on the webgraph 

structure for supporting web search. However, 

theweb graph structure is constantly evolving; Web 

pagesand hyper-links are created, deleted, and 

updated. As theunderlying web graph evolves, the 

PageRank rankingresults gradually become stale, 

potentially lowering thequality of web search.

 Incremental processing is a promising approach 

torefreshing mining results. Given the size

input bigdata, it is often very expensive to rerun the 
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As new data and updates are 

constantly arriving, the results of data mining 

applications become stale and obsolete overtime. 

Incremental processing is a promising approach 

to refreshing mining results. It utilizes previously 

saved states to avoid the expense of re-

computation from scratch. In this paper, we 

propose i2 MapReduce, a novel incremental 

MapReduce, the most 

widely used framework for mining big data. 

the-art work on 

Incoop, i2 MapReduce (i) performs key-value pair 

level incremental processing rather than task level 

computation, (ii) supports not only one-step 

computation but also more sophisticated iterative 

computation, which is widely used in data mining 

applications, and (iii) incorporates a set of novel 

techniques to reduce I/O overhead for accessing 

preserved fine-grain computation states. We 

evaluate i2MapReduce using a one

and four iterative algorithms with diverse 

computation characteristics. Experimental results 

on Amazon EC2 show signi

performanceimprovements of i2MapReduce 

compared to both plain and iterative MapReduce 

performing re-computation

 

I.INTRODUCTION
amount of digital data is being accumulatedin 

many important areas, including e-commerce, 

socialnetwork, finance, health care, education, and 

has become increasingly popular to 

mine such big data inorder to gain insights to help 

business decisions or to providebetter personalized, 

higher quality services.Inmany situations, it is 

desirable to periodically refresh themining 

o keep the mining resultsup-to-

ple, the PageRank algorithmcomputes 

ranking scores of web pages based on the webgraph 

structure for supporting web search. However, 

theweb graph structure is constantly evolving; Web 

ated, deleted, and 

updated. As theunderlying web graph evolves, the 

results gradually become stale, 

potentially lowering thequality of web search. 

 
Incremental processing is a promising approach 

torefreshing mining results. Given the size of the 

input bigdata, it is often very expensive to rerun the 

entire computationfrom scratch. Incremental 

processing exploits the factthat the input data of two 

subsequent computations A and Bare similar. Only a 

very small fraction of the input data hasch

idea is to save states in computation A, re

states in computation B, and perform re

computationonly for states that are affected by the 

changed input data. Inthis paper, we investigate the 

realization of this principlein the context of th

MapReduce computing framework.

II.LITERATURE SURVEY
Big data is constantly evolving. As new data 

andupdates are being collect

data mining algorithm will gradually change, and the 

computedresults will become stale and obsolete 

time. Inmany situations, it is desirable to periodically 

refresh themining computation in order to keep the 

mining resultsup

frameworkfor incremental big data processing. 

MapReduce combinesa 

engine, a general-purposeiterative model, and a set of 

effective techniques for incremen

reschedules the failed Map/Reducetask in case task 

failure is detected. However, the interdependencyof 

prime Reduce tasks and prime Map tasks 

inMapReduce requires more com

tolerancesolution. i2MapReduce checkpoints the 

prime Reduce task’soutput state data and MRBGraph 

file on HDFS To the bestof our knowledge, the task

level coarse-grain incremental
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omputation but also more sophisticated iterative 

computation, which is widely used in data mining 

applications, and (iii) incorporates a set of novel 

techniques to reduce I/O overhead for accessing 

grain computation states. We 

educe using a one-step algorithm 

and four iterative algorithms with diverse 

computation characteristics. Experimental results 

on Amazon EC2 show significant 

performanceimprovements of i2MapReduce 

compared to both plain and iterative MapReduce 

computation 

INTRODUCTION 
entire computationfrom scratch. Incremental 

processing exploits the factthat the input data of two 

subsequent computations A and Bare similar. Only a 

very small fraction of the input data haschanged. The 

idea is to save states in computation A, re-useA’s 

states in computation B, and perform re-

computationonly for states that are affected by the 

changed input data. Inthis paper, we investigate the 

realization of this principlein the context of the 

MapReduce computing framework. 

II.LITERATURE SURVEY 

Big data is constantly evolving. As new data 

andupdates are being collected, the input data of a big 

mining algorithm will gradually change, and the 

computedresults will become stale and obsolete over 

time. Inmany situations, it is desirable to periodically 

refresh themining computation in order to keep the 

mining resultsup-to-dateMapReduce-based 

frameworkfor incremental big data processing. 

MapReduce combinesa fine-grain incremental 

purposeiterative model, and a set of 

effective techniques for increment MapReduce 

reschedules the failed Map/Reducetask in case task 

failure is detected. However, the interdependencyof 

prime Reduce tasks and prime Map tasks 

inMapReduce requires more complicated fault-

tolerancesolution. i2MapReduce checkpoints the 

prime Reduce task’soutput state data and MRBGraph 

To the bestof our knowledge, the task-

grain incrementalprocessing system, 
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Incoopis not publicly available.Therefore, we cannot 

compare i2 MapReduce with Incoop.Nevertheless, 

our statistics show that without carefuldata partition, 

almost all tasks see changes in the 

experiments,making task-level incremental 

processing lesseffective. 

Disadvantagesof Existing System 
• Task-level incremental processing less 

effective.  

• Plain and iterative MapReduce performing 

re-computation. 

• MapReduce re-computation takes long time. 

• Performance is Low  inRuntime. 

III.PROPOSED SYSTEM 

MapReduce, a novel incremental processing 

extension to MapReduce, themost widely used 

framework for mining big data. Compared with the 

state-of-the-art work on Incoop, i2MapReduce  

performs key-valuepair level incremental processing 

rather than task level re-computation,  supports not 

only one-step computation but also moresophisticated 

iterative computation, which is widely used in data 

mining applications, and  incorporates a set of novel 

techniques toreduce I/O overhead for accessing 

preserved fine-grain computation states. We evaluate 

i2MapReduce using a one-step algorithm andfour 

iterative algorithms with diverse computation 

characteristics. It show significant 

performanceimprovements of i2MapReduce 

compared to both plain and iterative MapReduce 

performing re-computation.we propose a general-

purpose MapReduce model for iterative computation 

and describe how to efficiently support this 

computationi2MapReduce must transfer the updated 

state kv-pairs to their corresponding prime Map task, 

which caches theirdependent structure kv-pairs in its 

local file system. Real-machine experiments showthat 

i2 MapReduce can significantly reduce the run time 

for refreshing big data mining results compared to re-

computationon both plain and iterative MapReduce. 

Advantages of Proposed System 

It performs key-value pair level incremental 

processing.It supports one-step computation and 

moresophisticated iterative computation.Performance 

is very high  in Runtime. 

Basic Idea  
Consider two MapReduce jobs A and A0 

performing the same computation on input data set D 

and D0, respectively. D0 ¼ D þ DD, where DD 

consists of the inserted and deleted input hK1; V 

1is1. An update can be represented as a deletion 

followed by an insertion. Our goal is to recompute 

only the Map and Reduce function call instances that 

are affected by DD. Incremental computation for 

Map is straightforward. We simply invoke the Map 

function for the inserted or deleted hK1; V 1is. Since 

the other input kv-pairs are not changed,their Map 

computation would remain the same. We now have 

computed the delta intermediate values, denoted 

DM,including inserted and deleted hK2; V2is.To 

perform incremental Reduce computation, we need to 

save the fine-grain states of job A, denoted M, which 

includes hK2; fV 2gis. We will recompute the 

Reduce function for each K2 in DM. The other K2 in 

M does not see anychanged intermediate values and 

therefore would generate the same final result. For a 

K2 in DM, typically only a subset of the list of V 2 

have changed. Here, we retrieve the saved hK2; fV 

2gi from M, and apply the inserted and/or deleted 

values from DM to obtain an updated Reduce input. 

We then re-compute the Reduce function on this 

input to generate the changed final results hK3; V 

3is.It is easy to see that results generated from this 

incremental computation are logically the same as the 

results from completely re-computing A0. 

Incremental iterative processing 
In this section, we present incremental 

processing techniquesfor iterative computation. Note 

that it is not sufficientto simply combine the above 

solutions for incremental onestep processing and 

iterative computation. In the following, we discuss 

three aspects thatwe address in order to achieve an 

effective design. 

Fault-Tolerance 
Vanilla MapReduce reschedules the failed 

Map/Reduce task in case task failure is detected. 

However, the interdependency of prime Reduce tasks 

and prime Map tasks in i2MapReduce requires more 

complicated fault-tolerance solution. i2MapReduce 

checkpoints the prime Reduce task’s output state data 

and MRBGraph file on HDFS in every 

iteration.Upon detecting a failure, i2MapReduce 

recovers by considering task dependencies in three 

cases. (i) In case a prime Map task fails, the master 

reschedules the Map task on the worker where its 

dependent Reduce taskresides. The prime Map task 

reloads the its structure data and resumes 

computation from its dependent state 

data(checkpoint). (ii) In case a prime Reduce task 

fails, the master reschedules the Reduce task on the 

worker where its dependent Map task resides. The 

prime Reduce task reloads its MRBGraph file 

(checkpoint) and resumes computation by  
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re-collecting Map outputs. (iii) In case a worker fails, 

the master reschedules the interdependent prime Map 

task and prime Reduce task to a healthy worker 

together. The prime Map task and Reduce task 

resume computation based on the checkpointed state 

data and MRBGraph file as introduced above.

Reducing Change Propagation
In incremental iterative computation, 

changes in the delta input may propagate to more and 

more kv-pairs as the computation iterates. For 

example, in PageRank, a change thataffects a vertex 

in a web graph propagates to the neighborvertices 

after an iteration, to the neighbors of the 

neighborsafter two iterations, to the

neighbors after threeiterations, and so on. Due to this 

effect, incremental processingmay become less 

effective after a number of iterations.

To address this problem, i2MapReduce employs a 

changepropagation control technique, which is 

similar to the dynamiccomputation in GraphLab [6]. 

It filters negligible changes of state kv

below a given threshold. These filteredkv

supposed to be very close to convergence. Onlythe 

state values that see changes greater than the 

thresholdare emitted for next iteration. The changes 

for a state kv-pairare accumulated. It is possible a 

filtered kv-pair may later beemitted if its accumulated 

change is big enough.The observation behind this 

technique is that iterativecomputation often 

converges asymmetrically: Many statekv

quickly converge in a few iterations, while 

theremaining state kv-pairs converge slowly over 

many iterations. 

Mapreduce Background 
The Reduce function takes a K2 and a list of 

fV 2g as input and computes the final output 

hK3; V 3is.A MapReduce system (e.g., Apache 

Hadoop) usually reads the input data of the 

MapReduce computation from and writes the final 

results to a distributed file system(e.g., HDFS), which 

divides a file into equal-sized(e.g., 64 MB) blocks 

and stores the blocks across a cluster of machines. 

For a MapReduce program, the MapReduce system 

runs a JobTracker process on a master node to 

monitor the job progress, and a set of TaskTracker 

processes on worker nodes to perform the actual Map 

and Reduce tasks.TheJobTracker starts a Map task 

per data block, and typically assigns it to the 

TaskTracker on the machine that holds the 

corresponding data block in order to minimize 

communication overhead. Each Map task calls the 

Map function for every input hK1; V

the intermediate kv-pairs hK2; V 2is on local disks. 
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collecting Map outputs. (iii) In case a worker fails, 

the master reschedules the interdependent prime Map 

sk to a healthy worker 

together. The prime Map task and Reduce task 

resume computation based on the checkpointed state 

data and MRBGraph file as introduced above. 

Reducing Change Propagation 
In incremental iterative computation, 

may propagate to more and 

pairs as the computation iterates. For 

example, in PageRank, a change thataffects a vertex 

in a web graph propagates to the neighborvertices 

ration, to the neighbors of the 

neighborsafter two iterations, to the three-hop 

neighbors after threeiterations, and so on. Due to this 

effect, incremental processingmay become less 

effective after a number of iterations. 

address this problem, i2MapReduce employs a 

changepropagation control technique, which is 

the dynamiccomputation in GraphLab [6]. 

state kvpairs that are 

below a given threshold. These filteredkv-pairs are 

supposed to be very close to convergence. Onlythe 

state values that see changes greater than the 

re emitted for next iteration. The changes 

pairare accumulated. It is possible a 

pair may later beemitted if its accumulated 

change is big enough.The observation behind this 

technique is that iterativecomputation often 

asymmetrically: Many statekv-pairs 

quickly converge in a few iterations, while 

pairs converge slowly over 

The Reduce function takes a K2 and a list of 

fV 2g as input and computes the final output kv-pairs 

hK3; V 3is.A MapReduce system (e.g., Apache 

Hadoop) usually reads the input data of the 

MapReduce computation from and writes the final 

results to a distributed file system(e.g., HDFS), which 

sized(e.g., 64 MB) blocks 

stores the blocks across a cluster of machines. 

For a MapReduce program, the MapReduce system 

runs a JobTracker process on a master node to 

monitor the job progress, and a set of TaskTracker 

processes on worker nodes to perform the actual Map 

asks.TheJobTracker starts a Map task 

per data block, and typically assigns it to the 

TaskTracker on the machine that holds the 

corresponding data block in order to minimize 

communication overhead. Each Map task calls the 

Map function for every input hK1; V 1i, and stores 

pairs hK2; V 2is on local disks. 

Intermediate results are shuffled to Reduce tasks 

according to a partition function (e.g., a hash 

function) on K2. After a Reduce task obtains and 

merges intermediate results from all Map

invokes the Reduce function oneach hK2; fV 2gi to 

generate the final output kv

MapReduce program, the MapReducesystem runs a 

JobTracker process on a master node tomonitor the 

job progress, and a set of TaskTracker processe

worker nodes to perform the actual Map andReduce 

tasks.TheJobTracker starts a Map task per data block, 

and 

typically assigns it to the TaskTracker on the 

machinethat holds the corresponding data block in 

order to minimizecommunication overhead

MRBG-Store 
The MRBG-Store supports the preservation and 

retrieval offine-grain MRBGraph states for 

incremental processing. Wesee two main 

requirements on the MRBG

Store must incrementally store the 

evolvingMRBGraph. Consider a sequenc

that incrementallyrefresh the results of a big data 

mining algorithm. As inputdata evolves, the 

intermediate states in the MRBGraphwill also evolve. 

It would be wasteful to store the entire

each subsequent job. Instead, we would like t

and store only the updated part of the 

MRBGraph.Second, the MRGB

efficient retrieval of preserved states of given 

Reduceinstances. For incremental 

computation, i2MapReduce re

instance associated with e

edge, as described in Section 3.3. For a changed 

edge, it queries the MRGB

preserved states ofthe in-edges of the associated K2, 

and merge the preserved states with the newly 

computed edge changes. 
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Intermediate results are shuffled to Reduce tasks 

according to a partition function (e.g., a hash 

function) on K2. After a Reduce task obtains and 

merges intermediate results from all Map Tasks, it 

invokes the Reduce function oneach hK2; fV 2gi to 

generate the final output kv-pairs hK3; V 3is.For a 

MapReduce program, the MapReducesystem runs a 

JobTracker process on a master node tomonitor the 

job progress, and a set of TaskTracker processeson 

worker nodes to perform the actual Map andReduce 

tasks.TheJobTracker starts a Map task per data block, 

typically assigns it to the TaskTracker on the 

machinethat holds the corresponding data block in 

order to minimizecommunication overhead. 

Store supports the preservation and 

grain MRBGraph states for 

incremental processing. Wesee two main 

requirements on the MRBG-Store. First, theMRBG-

Store must incrementally store the 

evolvingMRBGraph. Consider a sequence of jobs 

that incrementallyrefresh the results of a big data 

mining algorithm. As inputdata evolves, the 

intermediate states in the MRBGraphwill also evolve. 

It would be wasteful to store the entireMRBGraph of 

Instead, we would like to obtain 

and store only the updated part of the 

MRBGraph.Second, the MRGB-Store must support 

efficient retrieval of preserved states of given 

Reduceinstances. For incremental Reduce 

computation, i2MapReduce re-computes the Reduce 

instance associated with each changed MRBGraph 

edge, as described in Section 3.3. For a changed 

edge, it queries the MRGB-Store to retrieve the 

edges of the associated K2, 

and merge the preserved states with the newly 
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Extending MRBG-Store for Multiple 

Iterations 
As described previously in Section 3.4, MRBG-Store 

appends newly computed chunks to the end of the 

MRBGraph file 

and updates the chunk index to reflect the new 

positions.Obsolete chunks are removed offline when 

the worker machine is idle. In an incremental 

iterative job, every iteration 

will generate newly computed chunks,which are 

sorted due to the MapReduce shuffling phase. 

Consequently, the MRBGraph file will consist of 

multiple batches of sorted 

chunks, corresponding to a series of iterations. If a 

chunk exists in multiple batches, a retrieval request 

returns the latest 

version of the chunk (as pointed to by the chunk 

index). 

Optimization for Special Accumulator Reduce 

This property allows us to process the two 

data set D and DD separately and then to simply 

combine the results by the ’_’ operation to obtain the 

full result. We call this kind of Reduce function 

accumulator Reduce. For this special case, it is not 

necessary to preserve the MRBGraph.Then it simply 

invokes the accumulator Reduce to accumulate 

changes to the result kv-pairs.ManyMapReduce 

algorithms employ accumulator Reduce. A well-

known example is WordCount. The Reduce function 

of WordCount computes the count of word 

appearances using an integer sum operation, which 

satisfies the above property. Other common 

operations that directly satisfy the distributive 

property include maximum and minimum. Moreover, 

some operations can be easily modified to satisfy the 

requirement of accumulator Reduce.  

 

For example, average is computed as dividing sum by 

count. While it is not possible to combine two 

averages into a single average, we can modify the 

implementation to allow/produce a partial sum and a 

partial count in the function input and the output. 

Then the implementation can accumulatepartial sums 

and partial counts in order to compute the average of 

the full data set. 

General-Purpose Iterative MapReduce Model 
In general, the improvements focus on two 

aspects: Reducing job startup costs. In vanilla 

MapReduce, every algorithm iteration runs one or 

several MapReduce jobs. Note that Hadoop may take 

over 20 seconds to start a job with 10–100 tasks. If 

the computation of each iteration is relatively simple, 

job startup costs may consist of an overly large 

fraction of the run time. The solution is to modify 

MapReduce to reuse the same jobs across iterations, 

and killthem only when the computation 

completes.Caching structure data. Structure data is 

immutableduring computation. It is also much larger 

than state data in many applications (e.g., PageRank, 

Kmeans,and GIM-V). Therefore, it is wasteful to 

transfer structure data over and over again in every 

iteration.An optimization is to cache structure data in 

local file systems to avoid the cost of network 

communication and reading from HDFS. 

IV.CONCLUSION 
Wehave described i2MapReduce, a 

MapReduce-based framework for incremental big 

data processing. i2 MapReduce combinesa fine-grain 

incremental engine, a general-purposeiterative model, 

and a set of effective techniques for 

incrementaliterative computation.Real-machine 

experiments showthat i2 MapReduce can 

significantly reduce the run time forrefreshing big 

data mining results compared to re-computation on 

both plain and iterative MapReduce. 
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