

 International Journal of Advanced Research in Management, Architecture, Technology

and Engineering (IJARMATE)

i2MapReduce: Incremental Map

Mining Evolving Big
ANNAL.D, V.S ARCHANA, R.DHASS, R.RAJASHREE

AbstractAs new data and updates are

constantly arriving, the results of data
applications become stale and obsolete over

Incremental processing is a promising approach

to refreshing mining results. It utilizes previously

saved states to avoid the expense of re

computation from scratch. In this paper, we

propose i2 MapReduce, a novel incremental

processing extension to MapReduce, the most

widely used framework for mining big data.

Compared with the state-of-the

Incoop, i2 MapReduce (i) performs key

level incremental processing rather than task level

re-computation, (ii) supports not only one

Today amount of digital data is being accumulatedin

many important areas, including e

socialnetwork, finance, health care, education, and

environment.It has become increasingly popular to

mine such big data inorder to gain insights to help

business decisions or to providebetter personalized,

higher quality services.Inmany situations, it is

desirable to periodically refresh themining

computation in order to keep the mining resultsup

date. For example, the PageRank algorithm

ranking scores of web pages based on the webgraph

structure for supporting web search. However,

theweb graph structure is constantly evolving; Web

pagesand hyper-links are created, deleted, and

updated. As theunderlying web graph evolves, the

PageRank rankingresults gradually become stale,

potentially lowering thequality of web search.

 Incremental processing is a promising approach

torefreshing mining results. Given the size

input bigdata, it is often very expensive to rerun the

ISSN (ONLINE):

Available online at

International Journal of Advanced Research in Management, Architecture, Technology
(IJARMATE) Vol. 2,Special Issue 6, March 2016

All Rights Reserved © 2016 IJARMATE

i2MapReduce: Incremental Map Reduce

Mining Evolving Big Data
ANNAL.D, V.S ARCHANA, R.DHASS, R.RAJASHREE

As new data and updates are

constantly arriving, the results of data mining

applications become stale and obsolete overtime.

Incremental processing is a promising approach

to refreshing mining results. It utilizes previously

saved states to avoid the expense of re-

computation from scratch. In this paper, we

propose i2 MapReduce, a novel incremental

MapReduce, the most

widely used framework for mining big data.

the-art work on

Incoop, i2 MapReduce (i) performs key-value pair

level incremental processing rather than task level

computation, (ii) supports not only one-step

computation but also more sophisticated iterative

computation, which is widely used in data mining

applications, and (iii) incorporates a set of novel

techniques to reduce I/O overhead for accessing

preserved fine-grain computation states. We

evaluate i2MapReduce using a one

and four iterative algorithms with diverse

computation characteristics. Experimental results

on Amazon EC2 show signi

performanceimprovements of i2MapReduce

compared to both plain and iterative MapReduce

performing re-computation

I.INTRODUCTION
amount of digital data is being accumulatedin

many important areas, including e-commerce,

socialnetwork, finance, health care, education, and

has become increasingly popular to

mine such big data inorder to gain insights to help

business decisions or to providebetter personalized,

higher quality services.Inmany situations, it is

desirable to periodically refresh themining

o keep the mining resultsup-to-

ple, the PageRank algorithmcomputes

ranking scores of web pages based on the webgraph

structure for supporting web search. However,

theweb graph structure is constantly evolving; Web

ated, deleted, and

updated. As theunderlying web graph evolves, the

results gradually become stale,

potentially lowering thequality of web search.

Incremental processing is a promising approach

torefreshing mining results. Given the size of the

input bigdata, it is often very expensive to rerun the

entire computationfrom scratch. Incremental

processing exploits the factthat the input data of two

subsequent computations A and Bare similar. Only a

very small fraction of the input data hasch

idea is to save states in computation A, re

states in computation B, and perform re

computationonly for states that are affected by the

changed input data. Inthis paper, we investigate the

realization of this principlein the context of th

MapReduce computing framework.

II.LITERATURE SURVEY
Big data is constantly evolving. As new data

andupdates are being collect

data mining algorithm will gradually change, and the

computedresults will become stale and obsolete

time. Inmany situations, it is desirable to periodically

refresh themining computation in order to keep the

mining resultsup

frameworkfor incremental big data processing.

MapReduce combinesa

engine, a general-purposeiterative model, and a set of

effective techniques for incremen

reschedules the failed Map/Reducetask in case task

failure is detected. However, the interdependencyof

prime Reduce tasks and prime Map tasks

inMapReduce requires more com

tolerancesolution. i2MapReduce checkpoints the

prime Reduce task’soutput state data and MRBGraph

file on HDFS To the bestof our knowledge, the task

level coarse-grain incremental

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

International Journal of Advanced Research in Management, Architecture, Technology

 165

Reduce for

Data
ANNAL.D, V.S ARCHANA, R.DHASS, R.RAJASHREE

omputation but also more sophisticated iterative

computation, which is widely used in data mining

applications, and (iii) incorporates a set of novel

techniques to reduce I/O overhead for accessing

grain computation states. We

educe using a one-step algorithm

and four iterative algorithms with diverse

computation characteristics. Experimental results

on Amazon EC2 show significant

performanceimprovements of i2MapReduce

compared to both plain and iterative MapReduce

computation

INTRODUCTION
entire computationfrom scratch. Incremental

processing exploits the factthat the input data of two

subsequent computations A and Bare similar. Only a

very small fraction of the input data haschanged. The

idea is to save states in computation A, re-useA’s

states in computation B, and perform re-

computationonly for states that are affected by the

changed input data. Inthis paper, we investigate the

realization of this principlein the context of the

MapReduce computing framework.

II.LITERATURE SURVEY

Big data is constantly evolving. As new data

andupdates are being collected, the input data of a big

mining algorithm will gradually change, and the

computedresults will become stale and obsolete over

time. Inmany situations, it is desirable to periodically

refresh themining computation in order to keep the

mining resultsup-to-dateMapReduce-based

frameworkfor incremental big data processing.

MapReduce combinesa fine-grain incremental

purposeiterative model, and a set of

effective techniques for increment MapReduce

reschedules the failed Map/Reducetask in case task

failure is detected. However, the interdependencyof

prime Reduce tasks and prime Map tasks

inMapReduce requires more complicated fault-

tolerancesolution. i2MapReduce checkpoints the

prime Reduce task’soutput state data and MRBGraph

To the bestof our knowledge, the task-

grain incrementalprocessing system,

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology

and Engineering (IJARMATE) Vol. 2,Special Issue 6, March 2016

All Rights Reserved © 2016 IJARMATE 166

Incoopis not publicly available.Therefore, we cannot

compare i2 MapReduce with Incoop.Nevertheless,

our statistics show that without carefuldata partition,

almost all tasks see changes in the

experiments,making task-level incremental

processing lesseffective.

Disadvantagesof Existing System
• Task-level incremental processing less

effective.

• Plain and iterative MapReduce performing

re-computation.

• MapReduce re-computation takes long time.

• Performance is Low inRuntime.

III.PROPOSED SYSTEM

MapReduce, a novel incremental processing

extension to MapReduce, themost widely used

framework for mining big data. Compared with the

state-of-the-art work on Incoop, i2MapReduce

performs key-valuepair level incremental processing

rather than task level re-computation, supports not

only one-step computation but also moresophisticated

iterative computation, which is widely used in data

mining applications, and incorporates a set of novel

techniques toreduce I/O overhead for accessing

preserved fine-grain computation states. We evaluate

i2MapReduce using a one-step algorithm andfour

iterative algorithms with diverse computation

characteristics. It show significant

performanceimprovements of i2MapReduce

compared to both plain and iterative MapReduce

performing re-computation.we propose a general-

purpose MapReduce model for iterative computation

and describe how to efficiently support this

computationi2MapReduce must transfer the updated

state kv-pairs to their corresponding prime Map task,

which caches theirdependent structure kv-pairs in its

local file system. Real-machine experiments showthat

i2 MapReduce can significantly reduce the run time

for refreshing big data mining results compared to re-

computationon both plain and iterative MapReduce.

Advantages of Proposed System

It performs key-value pair level incremental

processing.It supports one-step computation and

moresophisticated iterative computation.Performance

is very high in Runtime.

Basic Idea
Consider two MapReduce jobs A and A0

performing the same computation on input data set D

and D0, respectively. D0 ¼ D þ DD, where DD

consists of the inserted and deleted input hK1; V

1is1. An update can be represented as a deletion

followed by an insertion. Our goal is to recompute

only the Map and Reduce function call instances that

are affected by DD. Incremental computation for

Map is straightforward. We simply invoke the Map

function for the inserted or deleted hK1; V 1is. Since

the other input kv-pairs are not changed,their Map

computation would remain the same. We now have

computed the delta intermediate values, denoted

DM,including inserted and deleted hK2; V2is.To

perform incremental Reduce computation, we need to

save the fine-grain states of job A, denoted M, which

includes hK2; fV 2gis. We will recompute the

Reduce function for each K2 in DM. The other K2 in

M does not see anychanged intermediate values and

therefore would generate the same final result. For a

K2 in DM, typically only a subset of the list of V 2

have changed. Here, we retrieve the saved hK2; fV

2gi from M, and apply the inserted and/or deleted

values from DM to obtain an updated Reduce input.

We then re-compute the Reduce function on this

input to generate the changed final results hK3; V

3is.It is easy to see that results generated from this

incremental computation are logically the same as the

results from completely re-computing A0.

Incremental iterative processing
In this section, we present incremental

processing techniquesfor iterative computation. Note

that it is not sufficientto simply combine the above

solutions for incremental onestep processing and

iterative computation. In the following, we discuss

three aspects thatwe address in order to achieve an

effective design.

Fault-Tolerance
Vanilla MapReduce reschedules the failed

Map/Reduce task in case task failure is detected.

However, the interdependency of prime Reduce tasks

and prime Map tasks in i2MapReduce requires more

complicated fault-tolerance solution. i2MapReduce

checkpoints the prime Reduce task’s output state data

and MRBGraph file on HDFS in every

iteration.Upon detecting a failure, i2MapReduce

recovers by considering task dependencies in three

cases. (i) In case a prime Map task fails, the master

reschedules the Map task on the worker where its

dependent Reduce taskresides. The prime Map task

reloads the its structure data and resumes

computation from its dependent state

data(checkpoint). (ii) In case a prime Reduce task

fails, the master reschedules the Reduce task on the

worker where its dependent Map task resides. The

prime Reduce task reloads its MRBGraph file

(checkpoint) and resumes computation by

 International Journal of Advanced Research in Management, Architecture, Technology

and Engineering (IJARMATE)

re-collecting Map outputs. (iii) In case a worker fails,

the master reschedules the interdependent prime Map

task and prime Reduce task to a healthy worker

together. The prime Map task and Reduce task

resume computation based on the checkpointed state

data and MRBGraph file as introduced above.

Reducing Change Propagation
In incremental iterative computation,

changes in the delta input may propagate to more and

more kv-pairs as the computation iterates. For

example, in PageRank, a change thataffects a vertex

in a web graph propagates to the neighborvertices

after an iteration, to the neighbors of the

neighborsafter two iterations, to the

neighbors after threeiterations, and so on. Due to this

effect, incremental processingmay become less

effective after a number of iterations.

To address this problem, i2MapReduce employs a

changepropagation control technique, which is

similar to the dynamiccomputation in GraphLab [6].

It filters negligible changes of state kv

below a given threshold. These filteredkv

supposed to be very close to convergence. Onlythe

state values that see changes greater than the

thresholdare emitted for next iteration. The changes

for a state kv-pairare accumulated. It is possible a

filtered kv-pair may later beemitted if its accumulated

change is big enough.The observation behind this

technique is that iterativecomputation often

converges asymmetrically: Many statekv

quickly converge in a few iterations, while

theremaining state kv-pairs converge slowly over

many iterations.

Mapreduce Background
The Reduce function takes a K2 and a list of

fV 2g as input and computes the final output

hK3; V 3is.A MapReduce system (e.g., Apache

Hadoop) usually reads the input data of the

MapReduce computation from and writes the final

results to a distributed file system(e.g., HDFS), which

divides a file into equal-sized(e.g., 64 MB) blocks

and stores the blocks across a cluster of machines.

For a MapReduce program, the MapReduce system

runs a JobTracker process on a master node to

monitor the job progress, and a set of TaskTracker

processes on worker nodes to perform the actual Map

and Reduce tasks.TheJobTracker starts a Map task

per data block, and typically assigns it to the

TaskTracker on the machine that holds the

corresponding data block in order to minimize

communication overhead. Each Map task calls the

Map function for every input hK1; V

the intermediate kv-pairs hK2; V 2is on local disks.

ISSN (ONLINE):

Available online at

International Journal of Advanced Research in Management, Architecture, Technology
(IJARMATE) Vol. 2,Special Issue 6, March 2016

All Rights Reserved © 2016 IJARMATE

collecting Map outputs. (iii) In case a worker fails,

the master reschedules the interdependent prime Map

sk to a healthy worker

together. The prime Map task and Reduce task

resume computation based on the checkpointed state

data and MRBGraph file as introduced above.

Reducing Change Propagation
In incremental iterative computation,

may propagate to more and

pairs as the computation iterates. For

example, in PageRank, a change thataffects a vertex

in a web graph propagates to the neighborvertices

ration, to the neighbors of the

neighborsafter two iterations, to the three-hop

neighbors after threeiterations, and so on. Due to this

effect, incremental processingmay become less

effective after a number of iterations.

address this problem, i2MapReduce employs a

changepropagation control technique, which is

the dynamiccomputation in GraphLab [6].

state kvpairs that are

below a given threshold. These filteredkv-pairs are

supposed to be very close to convergence. Onlythe

state values that see changes greater than the

re emitted for next iteration. The changes

pairare accumulated. It is possible a

pair may later beemitted if its accumulated

change is big enough.The observation behind this

technique is that iterativecomputation often

asymmetrically: Many statekv-pairs

quickly converge in a few iterations, while

pairs converge slowly over

The Reduce function takes a K2 and a list of

fV 2g as input and computes the final output kv-pairs

hK3; V 3is.A MapReduce system (e.g., Apache

Hadoop) usually reads the input data of the

MapReduce computation from and writes the final

results to a distributed file system(e.g., HDFS), which

sized(e.g., 64 MB) blocks

stores the blocks across a cluster of machines.

For a MapReduce program, the MapReduce system

runs a JobTracker process on a master node to

monitor the job progress, and a set of TaskTracker

processes on worker nodes to perform the actual Map

asks.TheJobTracker starts a Map task

per data block, and typically assigns it to the

TaskTracker on the machine that holds the

corresponding data block in order to minimize

communication overhead. Each Map task calls the

Map function for every input hK1; V 1i, and stores

pairs hK2; V 2is on local disks.

Intermediate results are shuffled to Reduce tasks

according to a partition function (e.g., a hash

function) on K2. After a Reduce task obtains and

merges intermediate results from all Map

invokes the Reduce function oneach hK2; fV 2gi to

generate the final output kv

MapReduce program, the MapReducesystem runs a

JobTracker process on a master node tomonitor the

job progress, and a set of TaskTracker processe

worker nodes to perform the actual Map andReduce

tasks.TheJobTracker starts a Map task per data block,

and

typically assigns it to the TaskTracker on the

machinethat holds the corresponding data block in

order to minimizecommunication overhead

MRBG-Store
The MRBG-Store supports the preservation and

retrieval offine-grain MRBGraph states for

incremental processing. Wesee two main

requirements on the MRBG

Store must incrementally store the

evolvingMRBGraph. Consider a sequenc

that incrementallyrefresh the results of a big data

mining algorithm. As inputdata evolves, the

intermediate states in the MRBGraphwill also evolve.

It would be wasteful to store the entire

each subsequent job. Instead, we would like t

and store only the updated part of the

MRBGraph.Second, the MRGB

efficient retrieval of preserved states of given

Reduceinstances. For incremental

computation, i2MapReduce re

instance associated with e

edge, as described in Section 3.3. For a changed

edge, it queries the MRGB

preserved states ofthe in-edges of the associated K2,

and merge the preserved states with the newly

computed edge changes.

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

International Journal of Advanced Research in Management, Architecture, Technology

 167

Intermediate results are shuffled to Reduce tasks

according to a partition function (e.g., a hash

function) on K2. After a Reduce task obtains and

merges intermediate results from all Map Tasks, it

invokes the Reduce function oneach hK2; fV 2gi to

generate the final output kv-pairs hK3; V 3is.For a

MapReduce program, the MapReducesystem runs a

JobTracker process on a master node tomonitor the

job progress, and a set of TaskTracker processeson

worker nodes to perform the actual Map andReduce

tasks.TheJobTracker starts a Map task per data block,

typically assigns it to the TaskTracker on the

machinethat holds the corresponding data block in

order to minimizecommunication overhead.

Store supports the preservation and

grain MRBGraph states for

incremental processing. Wesee two main

requirements on the MRBG-Store. First, theMRBG-

Store must incrementally store the

evolvingMRBGraph. Consider a sequence of jobs

that incrementallyrefresh the results of a big data

mining algorithm. As inputdata evolves, the

intermediate states in the MRBGraphwill also evolve.

It would be wasteful to store the entireMRBGraph of

Instead, we would like to obtain

and store only the updated part of the

MRBGraph.Second, the MRGB-Store must support

efficient retrieval of preserved states of given

Reduceinstances. For incremental Reduce

computation, i2MapReduce re-computes the Reduce

instance associated with each changed MRBGraph

edge, as described in Section 3.3. For a changed

edge, it queries the MRGB-Store to retrieve the

edges of the associated K2,

and merge the preserved states with the newly

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology

and Engineering (IJARMATE) Vol. 2,Special Issue 6, March 2016

All Rights Reserved © 2016 IJARMATE 168

Extending MRBG-Store for Multiple

Iterations
As described previously in Section 3.4, MRBG-Store

appends newly computed chunks to the end of the

MRBGraph file

and updates the chunk index to reflect the new

positions.Obsolete chunks are removed offline when

the worker machine is idle. In an incremental

iterative job, every iteration

will generate newly computed chunks,which are

sorted due to the MapReduce shuffling phase.

Consequently, the MRBGraph file will consist of

multiple batches of sorted

chunks, corresponding to a series of iterations. If a

chunk exists in multiple batches, a retrieval request

returns the latest

version of the chunk (as pointed to by the chunk

index).

Optimization for Special Accumulator Reduce

This property allows us to process the two

data set D and DD separately and then to simply

combine the results by the ’_’ operation to obtain the

full result. We call this kind of Reduce function

accumulator Reduce. For this special case, it is not

necessary to preserve the MRBGraph.Then it simply

invokes the accumulator Reduce to accumulate

changes to the result kv-pairs.ManyMapReduce

algorithms employ accumulator Reduce. A well-

known example is WordCount. The Reduce function

of WordCount computes the count of word

appearances using an integer sum operation, which

satisfies the above property. Other common

operations that directly satisfy the distributive

property include maximum and minimum. Moreover,

some operations can be easily modified to satisfy the

requirement of accumulator Reduce.

For example, average is computed as dividing sum by

count. While it is not possible to combine two

averages into a single average, we can modify the

implementation to allow/produce a partial sum and a

partial count in the function input and the output.

Then the implementation can accumulatepartial sums

and partial counts in order to compute the average of

the full data set.

General-Purpose Iterative MapReduce Model
In general, the improvements focus on two

aspects: Reducing job startup costs. In vanilla

MapReduce, every algorithm iteration runs one or

several MapReduce jobs. Note that Hadoop may take

over 20 seconds to start a job with 10–100 tasks. If

the computation of each iteration is relatively simple,

job startup costs may consist of an overly large

fraction of the run time. The solution is to modify

MapReduce to reuse the same jobs across iterations,

and killthem only when the computation

completes.Caching structure data. Structure data is

immutableduring computation. It is also much larger

than state data in many applications (e.g., PageRank,

Kmeans,and GIM-V). Therefore, it is wasteful to

transfer structure data over and over again in every

iteration.An optimization is to cache structure data in

local file systems to avoid the cost of network

communication and reading from HDFS.

IV.CONCLUSION
Wehave described i2MapReduce, a

MapReduce-based framework for incremental big

data processing. i2 MapReduce combinesa fine-grain

incremental engine, a general-purposeiterative model,

and a set of effective techniques for

incrementaliterative computation.Real-machine

experiments showthat i2 MapReduce can

significantly reduce the run time forrefreshing big

data mining results compared to re-computation on

both plain and iterative MapReduce.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce:

Simplified data processingon large clusters,” in Proc.

6th Conf. Symp. Opear. Syst. Des.Implementation,

2004, p. 10.

[2] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J.

Ma, M. McCauley,M. J. Franklin, S.Shenker, and I.

Stoica, “Resilient distributeddatasets: A fault-tolerant

abstraction for, in-memory cluster

computing,” in Proc. 9th USENIX Conf. Netw. Syst.

Des. Implementation,2012, p. 2.

[3] R. Power and J. Li, “Piccolo: Building fast,

distributed programswith partitioned tables,” in Proc.

9th USENIX Conf. Oper. Syst. Des.Implementation,

2010, pp. 1–14.

[4] G. Malewicz, M. H. Austern, A. J. Bik, J. C.

Dehnert, I. Horn,N. Leiser, and G. Czajkowski,

“Pregel: A system for large-scalegraph processing,”

in Proc. ACM SIGMOD Int. Conf. Manage.

Data,2010, pp. 135–146.

