
 ISSN (ONLINE): 2454-9762

ISSN (PRINT): 2454-9762

 Available online at www.ijarmate.com

International Journal of Advanced Research in Management, Architecture, Technology and Engineering
(IJARMATE)
 Vol. 2, Special Issue 15, March 2016.

All Rights Reserved @ 2016 IJARMATE 1

Software Engineering Education:
The Synergy of Combined Research and Teaching

A J MOHAPATRA, EAST PHULNAKHARA

Abstract

Teaching software engineering is a sumptuous task. In

particular, practical software engineering courses require

a lot of experienced teaching staff, who are, as a result,

kept away from research projects.
In this paper, we report on a software engineering

course using a large interdisciplinary project from current

research. This way, the students were challenged by an

interesting industrial strength task. In turn, we obtained

students who were well-skilled for joining the research

projects. What is more, the software developed during the

software engineering course immediately contributed to the

research project. Altogether, the additional expenses spent

on teaching did not only improve the quality of teaching,

but also paid back to the research project.

1 Introduction

Teaching practical software engineering is one of the

most challenging tasks of computer science education. In

particular, it requires a software project to be defined that

is of reasonable size, but at the same time solvable within a

university term by a team of about ten students. Often, the

software projects used are too small, for the extent that

students are tempted to immediately begin working on the

implementation. They do not see the necessity for an

analysis and a design phase, for project management, and

for version management. In addition, the projects are too

small for training the social skills of the students.

Moreover, practical software engineering courses require a

lot of staff for teaching and coaching, for technical support,

and for organization.

In this paper, we report on the experience of using a

software project from current research in software

engineering education. This is very much in the spirit of

Wilhelm von Humboldt’s Ideal of Education [UN93].

Through the tight coupling of teaching and research, the

investment in practical software engineering courses pays

back to software engineering research.

1.1 Two problems

By combining research and teaching, we can solve two

problems with a single solution. One problem comes from

software engineering education, the other from software

engineering research.
In software engineering education, one of the main

problems is the definition of an industrial strength software

project, i.e., a project that cannot be solved by one or two

students on their own, a project that incorporates existing

and evolving third party software without any

documentation, a project with changing requirements, and

a project that has not got a clear outcome right from the

beginning. Moreover, the project should be interesting for

the students and challenging by allowing the use of state-

of- the- art technology. On the other hand, the project

should not be too large, such that a team of students will be

able to finish it within a university term.

In software engineering research, one of the main

problems is recruiting new students for research projects.

These students should be sufficiently skilled in software

engineering, should have some experience in the respective

research area and application domain, and should be highly

motivated.

1.2 One solution

Both problems have a common solution: using software

projects from research projects in courses in software

engineering. Moreover, the teaching staff can then be

supplemented with the experienced PhD students of the

project which benefit from the course outcome. Of

 ISSN (ONLINE): 2454-9762

ISSN (PRINT): 2454-9762

 Available online at www.ijarmate.com

International Journal of Advanced Research in Management, Architecture, Technology and Engineering
(IJARMATE)
 Vol. 2, Special Issue 15, March 2016.

All Rights Reserved @ 2016 IJARMATE 2

course, this is only the basic idea. For example, not all

research projects are good candidates for software

engineering courses. Moreover, many conceptual, technical

and organizational problems remain to be solved. Some of

them do not only concern the software engineering course

itself, but do concern the complete computer science

program. These issues will be discussed in Sections 2, 4

and 5.

1.3 The bonus

An immediate benefit of using a research project in a

software engineering course is the number of independent

teams working on the same project. If there are enough

well-motivated teams, we can be sure that at least some

teams will come up with really good results. In the end, we

only have to choose the best one, which can then be used in

the research project and can be further developed in next

year’s course. We call this concept competitive software

engineering, which seems to be a good concept if human

resources are for free. Clearly, in industry, human

resources are not for free. But at universities, the situation

is different. Why shouldn’t university research benefit from

this? At the University of Paderborn, we had about 200

students working in 18 teams, some of which came up with

excellent results.
Usually, the results of a software engineering course are

simply thrown into the bin. If we are interested in using the

results in a research project, we need to spend some extra

effort in order to guarantee quality, compatibility, and

maintainability of the results (at least of the winner of the

competition). We will report on the extra measures taken to

achieve this goal in Sect. 5. We must admit that we

underestimated this extra effort in our first course.

Nevertheless, the extra effort pays back when considering

the overall advantage.
In the following, we will report on the details of our

software engineering course. In Sect. 2, we will discuss the

computer science program at the University of Paderborn,

and we will briefly summarize several years of experience

with software engineering courses that did not use a project

from research. In Sect. 3, we will discuss the associated

research project. In Sect. 4 and 5, we will discuss the

concrete software project and the organization of the

course. A summary of our experiences and some

conclusions follow in Sect. 6 and 7.

2 Context and content

Clearly, software engineering cannot be taught in a

single software engineering course. For proper software

engineering education, the complete computer science

program must be adjusted to this goal. In this section, we

briefly discuss the computer science program at the

University of Paderborn, our teaching goals, and the key

issues of earlier software engineering courses.

2.1 Computer science program

At the University of Paderborn, software engineering

is a basic thread of the computer science program. Before

attending the practical software engineering course,

students must attend a programming course and a software

technology course. In these courses, they are provided with

basic programming skills in Java and with basic knowledge

in software engineering technology such as life-cycle

models and UML. Up to this point, however, the students’

practical experience in programming as well as in using

UML is restricted to small examples. During the practical

software engineering course in the end of their second year,

students are faced with a larger software project for the

first time.
In order continue with software engineering after the

software engineering course, the University of Paderborn

additionally requires an internship in industry and

participation in a one year project, which we call a ‘project

group’. The internship in industry provides more insight

into industrial software development. Since the industrial

partners are also partners in our research projects, students

stay in contact with research during their internship. In a

project group, once more, a group of about ten students

works on a software project. Typically, the software project

comes from the research of one or two research assistants

or PhD students, who supervise this group. In the project

group, the students do research and can continue to train

their software engineering skills. This time, however, they

are faced with much tighter conditions, because each

individual group must provide a useful result. Therefore,

the prior practical software engineering course is essential

to the success of the project groups. The practical software

engineering course has another useful effect on the project

groups: during the undergraduate course in software

engineering, the students get to know their supervisors,

who, in most cases, are PhD students or research assistants

doing their PhD. On the other hand, the supervisors get to

know their students. Therefore, the supervisors can choose

the best skilled students for their research projects and

encourage them to join their project groups, or to start a

bachelor or masters thesis in their project.

2.2 Teaching goals

The main purpose of the practical software

engineering course is to demonstrate the necessity of using

software engineering techniques for producing software.

Students should experience that jumping straight into

programming (hacking) won’t work anymore when the

projects become larger. The students should see

 ISSN (ONLINE): 2454-9762

ISSN (PRINT): 2454-9762

 Available online at www.ijarmate.com

International Journal of Advanced Research in Management, Architecture, Technology and Engineering
(IJARMATE)
 Vol. 2, Special Issue 15, March 2016.

All Rights Reserved @ 2016 IJARMATE 3

the necessity of all phases of software engineering [Cus00].

In particular, this applies to requirements engineering,

design, test and installation (system integration) phases.

Moreover, students should get a feeling for the documents

that must be produced in the different phases. They should

know which information must be contained in a

requirements document and a design document.

Students should also experience that developing

software in a team is completely different from

programming on their own. They should see the necessity

for project management, and they should train their

collaboration and communication skills. They should

experience the time pressure imposed by a customer in

combination with real-life adversities such as changing

requirements or changing deadlines. Finally, they should

learn how to present their work to a customer and to

communicate with him.
Another important teaching goal is reverse

engineering. Since most real-life software engineering

projects use some existing software without much

documentation, students must know how to tackle this

problem [Bot01, SSvdW99].

2.3 Earlier courses: key issues

In [GGN+02], we reported on our earlier software

engineering courses, which aim at the above teaching

goals. Here, we summarize the key issues of these courses.

As proposed by a number of software engineering

education papers [MR99, AL00, Bot01, Vau00, SSvdW99,

BC02], we used industrial-strength projects in our courses.

To motivate and challenge the students, the projects were

structured in such a way that it was possible to have a

contest at the end.
Concerning project management, the teams had to

meet several deadlines at which certain documents had to

be delivered. Each student was assigned the responsibility

for a specific task, which he had to coordinate in his group.

In order to coordinate work on the same documents,

students had to use the Concurrent Versions System

[CVS]. To simulate real-world adversities, we applied

some of Dawson’s dirty tricks [Daw00].
Moreover, the teams had to prepare a talk on their

requirements document. In the end, they had to prepare a

Web site containing a complete documentation of their

project and from where the software could be downloaded.

3 Research project

Instead of letting the students program just another

standard electronic timetable or database application, we

looked for a more motivating application example. Our

current research in the field of embedded real-time

systems provided a suitable candidate. When complex

concurrent software is developed in this application

domain, fundamental software engineering techniques such

as UML class diagrams, sequence diagrams and statecharts

are required to analyze and design the system. In contrast,

for the above mentioned standard application examples, the

student projects would often become a pure academic

exercise, as appropriate commercial database application

design tools exist today, which simplify the task at hand

greatly. The mechanical and physical aspects of an

embedded system also result in a clear and self-contained

problem where the need for appropriate software quality

and safety is more obvious than for standard example

applications.
As the underlying research project for the software

engineering course, we chose the new collaborative

research center 614 of the German Research Council

(DFG), titled “Self-optimizing Concepts and Structures in

mechanical Engineering”
1
. The general vision of this

collaborative research center is mechanical products with

inherent intelligence, which can react autonomously and

flexibly to changing environment and operation conditions.

As a concrete example, an already existing railcab research

project
2
 has been chosen, which aims at using a passive

track system with intelligent shuttles that operate

individually and make independent and decentralized

operational decisions. This autonomous shuttle concept

allows the gap between short- and long-distance traffic to

be bridged, and will bring considerable increase in

traveling comfort (e.g., no changing of trains) and higher

passenger flexibility. The infrastructure is built by satellite-

supported positioning and a cellular-phone network for

shuttles, to enable communication between shuttles and

stationary installations. The modular railway system

further combines sophisticated undercarriages, with the

advantages of new actuation techniques, as employed in

the Transrapid
3
, while using the existing railway tracks.

The main elements of the proposed intelligent shuttle

system are depicted in Fig. 1. The proposed scenario

results in a number of complex logistics optimization

problems. To reduce the energy consumption due to air

resistance, appropriate coordination between the shuttles is

required so that convoys can be built. To reduce costs, each

shuttle is built in a modular fashion. The most ambitious

module is the complex undercarriage, combining a linear

motor with a wear-free guiding. The collaborative research

center will address self-optimization for each of these

different elements.
The logistics of the system include the early detection

and bypassing of congestions. The booking system will

1 http://www.sfb614.de

2 http://www-nbp.upb.de/en/index.html

3 http://www.transrapid.de/en/index.html

 ISSN (ONLINE): 2454-9762

ISSN (PRINT): 2454-9762

 Available online at www.ijarmate.com

International Journal of Advanced Research in Management, Architecture, Technology and Engineering
(IJARMATE)
 Vol. 2, Special Issue 15, March 2016.

All Rights Reserved @ 2016 IJARMATE 4

manage demands for transport of passengers and cargo. It

will support client-specific rates to optimize shuttle

operation. When self-optimization techniques are

additionally employed, significant improvement for the

utilization of the shuttle system can be expected.

Logistic Shuttle convoys

Modular shuttle Undercarriage

Fig. 1: Elements of the Intelligent Shuttle System

While each shuttle operates autonomously, the

software-based coordination between them will ensure

system safety as well as optimize their energy

consumption. To reduce air resistance, the shuttles have to

drive as convoys with minimal distance between them. The

coordination between the speed control units of the shuttles

then becomes a safety-critical aspect, and results in a

number of hard real-time constraints, which have to be

addressed when building the distributed control software.

Self-optimization can be used to optimize the average-case

performance of the system, while its worst-case behavior

must be considered to ensure the required real-time

behavior.
The modular shuttle construction planned, has further

considerable potential for cost reduction through the

combination of standardized system modules with the

predicted large number of required units. Therefore, each

shuttle is built from modules. When composing the

different modules, a hierarchical structure of self-

optimizing control software is employed to ensure that sub-

modules optimize their behavior with respect to the goals

of their overall module.

Each shuttle is equipped with a linear motor which runs

on existing tracks. An intelligent undercarriage provides

considerably higher ride comfort. The wheels of the shuttle

are only used for guiding and braking and therefore the

wear of wheels is considerably reduced. The linear motor

principle allows contact-free power transmission into the

shuttle and thus power transmission by power lines or rails

is no longer necessary. These innovative technical

solutions further require

sophisticated shuttle software that optimizes the shuttle

behavior, also taking energy constraints into account.
The quality of complex mechatronic products, today

and in the future, will depend crucially on the high quality

of their software components. When self-optimization

comes into play, the role of software and its flexibility

becomes even more prominent. Within this collaborative

research center, the software responsible for the self-

optimization is considered to be a multi-agent system

(MAS). The contribution of our software engineering team

to this research project will be the development and

adjustment of fundamental software engineering

techniques for the collaborative research center. The

resulting design technique will support the following

features:
- support for the design of self-optimizing MAS
- support for the design for hard real-time systems
- integration of control into complex distributed and

knowledge-based software
- pattern-based design with partial synthesis of the

component behavior
- compositional verification of safety-critical system

properties for the resulting real-time software
- an environment simulation [Gar99] for embedding and

testing the real-time shuttle software that can be
later combined with more detailed simulations of the

physical shuttle behavior
To achieve all these goals, a combination of object-

oriented and component-based techniques with the multi-

agent paradigm will be developed, where each agent is

operating autonomously and trying to fulfill its own goals

pro-actively using the knowledge base following the

principle of self-optimization.

4 Transformation to a student project

Of course, such a long-term project as described above

is by far too ambitious and too complex for a software

engineering course. However, presenting the context of

such a project to students makes them aware of interesting

and challenging research problems. The possibility of

developing software which could be partly re-used in the

context of a large research project increases their interests

and active participation in the project significantly.

The general idea for stripping down the project to a

manageable and adequate size for a one-term student

project is to drop any (hard) real-time requirements and

any sophisticated optimization algorithms, and to keep the

model of the shuttle very simple.
In more detail, the task of each team is to (1) develop a

(sophisticated) 2D graphical user interface, (2) a smart

algorithm which optimizes the profit of a single shuttle,

and (3) an editor which supports the construction of maps

consisting mainly of tracks and stations.

 ISSN (ONLINE): 2454-9762

ISSN (PRINT): 2454-9762

 Available online at www.ijarmate.com

International Journal of Advanced Research in Management, Architecture, Technology and Engineering
(IJARMATE)
 Vol. 2, Special Issue 15, March 2016.

All Rights Reserved @ 2016 IJARMATE 5

As a basis for an environment simulation, a simulation

kernel was developed before the project started and given

to the students (see next section for more details). This

kernel supports the concurrent execution of an arbitrary

number of shuttles and randomly generates offers to be

taken by an individual shuttle. Each offer consists of a start

and final destination together with a deadline, a virtual

load, and a value which the shuttle earns if it arrives at the

final destination before the deadline expires. If the shuttle

arrives after the deadline, it pays a penalty. Using tracks

and stations when delivering the virtual load of the shuttle

as described in the offer, requires a shuttle to pay fees.

Each shuttle can now individually optimize its strategy

based on its current position at a particular station, its

current profit and the known costs for each track and

station to be passed when delivering the load. Some more

details of the rules of the game are omitted here. Taking

them into account gives students the opportunity to explore

very different and more or less sophisticated optimization

strategies to maximize the profit of a single shuttle.

The graphical user interface displays a map of tracks

and stations and illustrates the moves and positions of all

shuttles as they are delivering their loads and moving to

their final destinations. Of course, creativity has almost no

limits when designing the layout of such a map, as, for

example, the layout of stations, of shuttles and of the track

system can became very sophisticated.
Finally, the editor supports the construction of a single

map consisting of stations and tracks and their respective

costs. It controls the correct construction of a map as, for

example, there is no station which is not either the start or

end of a track.
The competitive nature of the course is underlined by a

tournament at the end of the term. All shuttles from all

teams with their independently produced algorithms run

concurrently on a map for a certain period of time. When

time expires, the individual profits identify the winner,

runner-up etc. of that round. A number of rounds are

played to determine an overall winner. Different maps are

constructed using the above mentioned editors.
In fact, the individual algorithm of the team’s shuttle

becomes each team’s protected knowledge which could

bring them the competitive advantage during the

tournament. In addition, the sophistication of the map

display and editor functionality is further input to the final

grading of the project.

In general, the student project requires substantial

knowledge in writing Java-programs for soft real-time

systems and using libraries for building sophisticated (2D)

user interfaces. It does not include using any hardware-

oriented programming interfaces or obeying constraints

which originate in the continuous nature of the research

project. For example, the complex control theory

which is needed to control the building of shuttle convoys

is not addressed in the student project.

5 Key issues of the development process

As explained above, we have substantial interest in

reusing results and especially software which is produced

by the course participants. This requires a very well-

defined and strictly monitored process, because this course

is the first exposure to a reasonably- sized software project

for most students. We focus here on the key issues in

addition to the process definition as described in section 2.

5.1 Strict project management

Firstly we distinguished clearly between the team

supervisors who was either an experienced PhD student or

in some cases a teaching assistant, and the group leader

who was a member of the student team. The supervisor had

to interfere if the work went into the wrong direction and

give general advice. The group leader or project manager

was really in charge of coordinating and controlling the

work of the whole group. This sharp distinction was

necessary to ensure that supervisors, who are involved in

the large research project in most cases, mainly play the

role of customers and do not become team members at

least in an unofficial way.
Secondly, the project plan consisted of hard deadlines.

At every deadline, the teams had to deliver their results of

the different project phases to the project manager who

forwarded them to a central course-wide management

authority (which later on turned to be the same person as

the one who managed the hotline, see below). Missed

deadlines implied a decrease of the team’s final grade. The

state of the deliveries of all teams was presented on a

website accessible to all course members. This approach

raised the peer-group pressure and made students sensitive

to the group dynamics and responsibilities.
Thirdly, to ensure a certain quality of the deliveries, we

provided content lists as well as a defined structure of each

document. In addition, we made excellently graded

document examples from former years available for the

students.
Fourth, in order to raise the quality of the individual

team product, two customer presentations took place in the

middle and near to the end of the project. Both

presentations were presented to independent persons, i.e.

supervisors who were not the supervisor of the group who

gave the presentation. This ensured real independence and

tough questions and discussions as is the case when a

industrial presentation is made to a customer. The

presentations were graded as part of the final grade. The

first presentation included mainly the requirements

document. This presentation was crucial to the teams,

 ISSN (ONLINE): 2454-9762

ISSN (PRINT): 2454-9762

 Available online at www.ijarmate.com

International Journal of Advanced Research in Management, Architecture, Technology and Engineering
(IJARMATE)
 Vol. 2, Special Issue 15, March 2016.

All Rights Reserved @ 2016 IJARMATE 6

because they had to reflect about their ideas and

approaches for performing a clear and comprehensible

presentation. The second presentation was used to show the

developed application which then became the software for

the final tournament as mentioned above.
Finally, we introduced time estimation and time control

throughout the project to make sure that (1) students

understand software also as an industrial product which

requires a cost/benefit analysis and (2) to control that our

requirements do not overload students. The estimations had

to be delivered after finishing the reengineering phase, i.e.

after the fourth week. The estimation included the time for

design, presentation, documentation, implementation and

tests. During the whole course we asked for weekly time

sheets, where each team member’s time effort was

reported. The time estimations and reports were not graded.

5.2 Using existing software

The soft real-time simulation kernel was developed

upfront by senior students under the supervision of an

assistant professor. This software also included a

visualisation component and a shuttle, which was able to

move on a sample track system, to bid for orders and to

perform an order after its assignment. This software was

used by the students to understand the basic logic of the

whole program and it served as the basis for the reverse

engineering exercise at the beginning of the project.
In addition to providing a simulation kernel for the

project and relieving students from programming a

complex complete concurrent system, we had some other

goals. One goal was testing the stability and performance of

such a kernel, which was achieved by using it in the

tournament where 18 shuttles ran for several hours. A

second goal was to evaluate different techniques for

building the kernel and to reveal problems in the system

architecture which was achieved by getting a lot of

feedback from the students using the kernel.
The kernel development was only completed during the

course which simulated “real-life software development”

where interfaces and sometimes even functionality of a

piece of reused software may change quite surprisingly and

suddenly.
The independent development of the kernel enforced a

way the teams can contact the kernel developers. Therefore

we installed a central hotline to coordinate bug reports and

fixes as well as questions and improvements. The hotline

was available via email and phone. During the course,

managing the hotline was done by one person only, who

was also highly involved in the development of the kernel.

This reduced the answer time of questions, because the

hotline employee had not to contact the developers so

often.

6 Lessons learned

As we did this experiment the first time, namely to

introduce research into an undergraduate software

engineering course, we learned a lot, especially concerning

student motivation, the results of time estimation and

control, and the exploitation of our hotline.

We also say a few words about the groupware aspects in

each group.

6.1 Motivation

We observed that the context of a large research project

had motivated the students to perform such a large,

difficult and time expensive course. The students realized

that their outcome will be part of the research activities of

the university and will not be thrown away afterwards. The

high motivation of the students caused them to incorporate

more features in their product than they had to. Examples

are the use of 3D instead of 2D visualization techniques,

which were postulated, cf. Fig.
2. Some teams included minimized maps to present an

overview of the whole map and the editing functionalities

were very impressive and easy to handle. In addition some

teams developed also some marketing strategies such as a

product flyer for their presentations or merchandising.

During the tournament, some teams showed also high team

spirit by wearing shirts with their team logo. Teams from

previous years and even fellow students came to the

tournament. These and several more examples show that

the right task has a very strong impact on the motivation of

the students.

6.2 Time estimation

Due to the lack of experience of the students the time

estimations were mostly imprecise, but they were

imprecise in a similar way. On the one hand most of them

estimated the effort for design, presentations,

documentation and tests too high. On the other hand they

underestimated the effort for implementation. The time for

design was particularly overestimated and the design phase

was even disregarded by most teams. The need for a good

design is hard to teach in a project like this. In large

industrial projects, the design should be seen as a contract

between two parties: one which produces the design and

another that uses the design for the implementation. These

two parties depend on each other. This concept is not

applicable to our course, as this course should introduce the

students into the whole software development process, so

the teams can not be split into designers and programmers.

The team’s estimations of the overall projects ranged

between 480 and 2,200 hours spanning over 15 weeks with

a team size of 11 students. The actual used effort

 ISSN (ONLINE): 2454-9762

ISSN (PRINT): 2454-9762

 Available online at www.ijarmate.com

International Journal of Advanced Research in Management, Architecture, Technology and Engineering
(IJARMATE)
 Vol. 2, Special Issue 15, March 2016.

All Rights Reserved @ 2016 IJARMATE 7

Fig. 2: 3D visualization component

ranged between 640 and 1,930. This shows the right

dimension of the project, as we expected not more than 12

hours per student and week, which is 1,980 hours in 15

weeks.

6.3 Groupware

Working with configuration and versioning tools is a

major learning step for our students. In our experience, it is

hard to teach the benefits of a versioning system in a

lecture. Students must use a versioning tool in a real team

project in order to understand its value. When introducing

the use of a versioning tool, students have many objections

and doubts that versioning works properly and supports

valuable team support. The first steps with the versioning

tool are often confusing and considered as overhead.

Although there are few students who didn’t use the

versioning system after a few weeks most of the students

couldn’t imagine how to do teamwork without such a

system. Some students with experience in teamwork not

employing a versioning system are very content with the

great relief from coordination efforts. They usually start to

promote versioning systems to other project and even to

companies they are working for.

6.4 Hotline

Industrial practice includes changing requirements over

a project’s duration. As mentioned in the last section, the

kernel evolved during the project, e.g. adding events,

changing protocols and also offering new abilities to get

information from the kernel. Consequently the

teams had to adapt their software over the whole project.

To coordinate and manage the changes and resulting

questions, a hotline was installed as mentioned above.

The hotline person reported at the beginning of the

project that the job sounded easy, e.g. collecting deliveries

from all teams and archiving them for the other

supervisors, or selecting and sorting the inquiries and bug

reports of the kernel. During the project, the time spent on

the hotline activities raised. For example, the hotline was

responsible for the installation of each application shown at

the final product presentation. The coordination,

installation and fine tuning of the final tournament was also

hard work, because some teams had not provided their

shuttles to the other teams and thus the integration tests

were not complete. The hardware environment was

different to the test environments, which was caused by

some problems with 3D-graphic-accelerator libraries and

drivers. On top of this the hotline was a drop-in centre for

all kinds of questions concerning the project, e.g. questions

about terms, grading, and sometimes also social problems.

In the end, the hotline job was not simply a hotline but

entailed coordination of the whole project.
During the project we observed that the hotline job was

more work than previously expected, but afterwards we

agreed that a different management would have failed. A

central management is crucial for the success of integrating

research parts in software engineering courses.
Finally, our experience of four years running this course

indicates that a group size of 10 - 11 members is pretty

optimal. It gives a reasonable size to practice teamwork

and, in addition, this size compared with

 ISSN (ONLINE): 2454-9762

ISSN (PRINT): 2454-9762

 Available online at www.ijarmate.com

International Journal of Advanced Research in Management, Architecture, Technology and Engineering
(IJARMATE)
 Vol. 2, Special Issue 15, March 2016.

All Rights Reserved @ 2016 IJARMATE 8

smaller sizes in the past, results in having more technically

experienced and skilled persons in Java-programming in

the team, i.e. students who already programmed a lot more

than was required by the introductory courses as mentioned

in section 2.

6.5 Teaching Assistants

For a course with 18 teams it is very difficult to get

sufficient suitable supervisors with technical as well as

social skills.

We recruited our supervisors from two groups. One

group consisted of PhD students (research assistants) with

a lot of experience. The other, larger group of supervisors

consisted of teaching assistants (TA). These TA’s usually

did not have enough knowledge to supervise a team.

Therefore, one important consideration in the selection of

these TA’s is that they have participated in the course (as

students) themselves. With such a background they know

the main problems which may occur and can handle

difficult situations more easily. Particularly the social

problems are solved faster and more effectively. Therefore,

if there is a good supervisor looking after a team, fewer

problems will arise and the students will be much more

content. Therefore we suggest paying a lot of attention to

the selection of the teaching assistants and their technical

and social skills.

6.6 Grading

In a course with 18 student teams and 15 supervisors it

is hard to grade the teams in an objective way and it took

several hours to consolidate on a marking scheme. This

year, the strict deadlines, the provided structures for

delivered documents and presentations allowed us to

compare the team’s results more easily. The consolidation

time was shorter and grading was easier, but we observed

that the concrete grading was not transparent enough to the

students from the start, which is something to be improved

on over the next years.

7 Conclusions

In conclusion, we can report that we were successful in

motivating and interesting students in research work. We

got many positive reactions at the end of the project and

some students asked us for a bachelor thesis and even more

are now teaching assistants in our research group. We

succeeded not only in reaching the teaching goals, but also

raised the quality of education because of better support of

the students. They learned what problems and challenges

arise in big software projects and how they can be handled.

We look forward to getting more feedback from a

survey we will perform in a few weeks, and also hope to

recruit more students for bachelor, master and PhD theses.

Acknowledgement

We thank all teaching assistants and students which

were involved in this year’s software engineering project.

References

[AL00] J. H. Andrews and H. L. Lutfiyya. Experience

Report: A Software Maintenance Project Course. In

Proc. of the 13th Conference on Software Engineering

Education and Training, Austin, Texas USA. IEEE

Computer Society Press, March 2000.
[BC02] M.B. Blake and T. Cornett. Teaching an Object-

Oriented Software Development Lifecycle in

Undergraduate Software Engineering Education. In

Proc. of the 15th Conference on Software

Engineering Education and Training, Covington,

Kentucky, USA. IEEE Computer Society Press,

February 2002.
[Bot01] K. Bothe. Reverse Engineering: the Challenge of

Large-Scale Real-World Educational Projects. In

Proc. of the 14th Conference on Software

Engineering Education and Training, Charlotte, North

Carolina USA. IEEE Computer Society Press,

February 2001.

[Cus00] J. Cusick. Lessons Learned from Teaching

Software Engineering to Adult Students. In Proc. of

the 13th Conference on Software Engineering

Education and Training, Austin, Texas USA. IEEE

Computer Society Press, March 2000.
[CVS] CVS. Concurrent Versions System - The open

standard for version control.

http://www.cvshome.org/.

[Daw00] R. Dawson. Twenty Dirty Tricks to Train

Software Engineers. In Proc. of the 22nd

International Conference on Software Engineering

(ICSE), Limerick, Ireland, pages 209–218. ACM

Press, 2000.
[Gar99] Stewart Gardiner (editor). Testing Safety-Related

Software: A Practical Handbook. Springer-Verlag,

1999.

[GGN+02] M. Gehrke, H. Giese, U.A. Nickel, J. Niere, M.

Tichy, J.P. Wadsack, and A. Zündorf, Reporting

about Industrial Strength Software Engineering

Courses for Undergraduates. In Proc. of the 24
th

International Conference on Software Engineering

(ICSE), Orlando, Florida, USA, pages. 395–405, May

2002.
[MR99] W.W. McMillan and S. Rajaprabhakaran. What

Leading Practitioners Say Should Be Emphasized in

Students’ Software Engineering Projects. In Proc. of

the 12th Conference on Software Engineering

 ISSN (ONLINE): 2454-9762

ISSN (PRINT): 2454-9762

 Available online at

www.ijarmate.com

International Journal of Advanced Research in Management, Architecture, Technology and Engineering
(IJARMATE)
 Vol. 2, Special Issue 15, March 2016.

All Rights Reserved @ 2016 IJARMATE 9

Education and Training, New Orleans, Louisiana
USA, pages 177–185. IEEE Computer Society
Press, March 1999.

[SSvdW99] K. Sikkel, T. A. M. Spil, and R. L. W. van de
Weg. Replacing a Hospital Information System: an
Example of a Real- World Case Study. In Proc. of
the 12th Conference on Software Engineering
Education and Training, New Orleans, Louisiana
USA. IEEE Computer Society Press, March 1999.

[UN93] UNESCO, International Bureau of Education.
Wilhelm von Humboldt. Prospects: the quarterly
review of comparative education, vol. XXIII,
no. 3/4, pp. 613–623, 1993.

[Vau00] R. B. Vaughn. A Report on Transfer of Software
Engineering to the Classroom Environment. In Proc.
of the 13th Conference on Software Engineering
Education and Training, Austin, Texas USA. IEEE
Computer Society Press, March 2000.

