
 ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

 Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE)
 Vol. 10, Issue 6June 2024

Design and implementation of 32-bit Arithmetic Logic Unit (ALU) with 32 operations

Mrs.G M G Madhuri Prabhu Dasu Saikam Bhargavi Koyya

Department of Electronic and Department of Electronic and Department of Electronic and

Communication Engineering Communication Engineering Communication Engineering

PSCMR College of Engineering PSCMR College of Engineering PSCMR College of Engineering

and Technology and Technology and Technology

Vijayawada,India Vijayawada,India Vijayawada,India

gmgmadhuri@gmail.com prabhudas0123@gmail.com bhargavikoyya102@gmail.com

Venkat Kandipalli Irfan Shaik

Department of Electronic and Department of Electronic and
Communication Engineering

Communication Engineering

PSCMR College of Engineering PSCMR College of Engineering
and Technology

and Technology

Vijayawada,India Vijayawada,India

venkatkandipalli93@gmail.com iamirfan1919@gmail.com

Abstract-

This paper presents the design and implementation of 32-bit
arithmetic logic unit capability of executing 32 distinct
arithmetic and logic operation based on select lines. utilizing
Verilog hardware description language (HDL) the ALU is
synthesized on FPGA hardware offering a versatile solution
for digital computing tasks. Selection of each operation is
facilitated by 5-bit control input, enabling a broad spectrum
of arithmetic and logic computations. The project
emphasizes the ALU’S functionality and adaptability across
various digital computing applications. North worthy
features includes clock gating and power control
optimization and efficiency utilization of hardware
resources. The efficiency and correctness of ALU design are
confirmed through stimulation and synthesis results,
underscoring its utility and practical scenarios

Keywords: Arithmetic Logic Unit, Verilog HDL, FPGA,
Digital Design, Arithmetic Operations, logic Operations,
Clock Gating and Pipelining.

I. Introduction

The arithmetic logic unit (ALU) is a fundamental
component of digital computing systems responsible for
performing arithmetic and logic operations on binary data.
ALUs are critical in executing various computational tasks
within processes, ranging from basic arithmetic operation to
complex logic comparisons [2]. Their significance extends
across various computing domains, including digital signal

processing, data manipulation and control logic. By
efficiently processing binary data, ALUs enable the
execution of complex algorithms and facilitate the core
functionality of computing devices.
The scope of this project encompasses the design,
simulation, synthesis and verification of the 32-bit ALU.
Key tasks include defining the ALU architecture,
implementing individual operations based on the select
lines, ensuring proper clock gating for power optimization
and conducting through testing to validate the functionality
of each operation. The primary objective of this project is to
design and implement a 32-bit ALU using Verilog HDL [5].
The ALU is intended to support a wide range of arithmetic,
logical and bit wise operations providing essential
functionality for a digital signal processing, data
manipulation and control logic within a computer system.
Through this endeavor, the objective is to deliver a versatile
and efficient ALU solution capable of meeting the
computational demands of modern computing systems [8].
The designed ALU module accepts two 32-bit operands (A and

B), along with the control signal for selecting the desired

operation.

38

 ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

 Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE)
 Vol. 10, Issue 6June 2024

The ALU operates on a positive edge-triggered clock and

delivers the computed results on a 64-bit output bus, ensuring

compatibility with a wider range of digital computing system.

II. LITERATURE SURVEY

The literature review for the design project of 32-bit
Arithmetic logic unit (ALU) encompasses several central
areas pretending to digital logic circuitry and computer
architecture. Firstly, a thorough exploration for ALU design
technique Various methodologies and architectural
approaches employed in constructing efficient ALUs. This
includes investigating traditional architecture like ripple
carry adders and carry lookahead adders, as well as modern
designs incorporating pipelining and parallel processing for
enhanced performance and thought put [1].
Moreover, an examination of fundamental digital logic
circuits, such as logical gates and flip flops, sheds lights on
the underlying components, utilized within ALU
architectures. Combinational and sequential logic circuits
are studied for their integration into ALU design,
contributing to overall functionality and efficiency [7].
Within the context of computer architecture, the review
delves into the role of ALU within the processor system and
its interaction with other components like registers, control
units and memory units. This encompasses an analysis of
instruction set architectures (ISAs) and their influence on
ALU design principles and the capabilities. Furthermore,
optimization techniques aimed at improving ALU
performance, area efficiency and power consumption are
explored. This entails investigating design automation tools
synthesis strategies and verification methodologies essential
for the successful deployment and validation of alu designs.
Recent advanced and research trends in ALU design
constitute another critical aspect of the literature review,
highlight novel approaches and emerging technologies
shaping the future of ALU architecture. By examining
recent research papers and academic publications, insight
into key challenges and future directions in ALU research,
including scalability, reliability and support for specialized
computation tasks, are gained. Moreover, the review
encompasses an analysis of existing solutions and
implementation including open-source projects and
academic resources, providing reference designs and code
examples for educational and research purposes. Through
this comprehensive literature review, the project in is
equipped with valuable knowledge and resource to inform
their ALU design and implementation processes effectively
[7]. Comparison of approaches
When comparing different approaches to ALU design,
several factors come into play. Traditional approaches like
ripple-carry adder offers simplicity and easy
implementation, but may lack efficiency in terms of speed
and area. On the other hand, carry-look ahead adder
provides faster competition by reducing the propagation
delay associated with carry propagation.
Modern design incorporating pipelining and parallel processing
techniques aim to further enhance performance by breaking
down operations into smaller stages or processing multiple
operations simultaneously. These approaches often

required more complex circuitry but offers significant
improvement in throughput [8].
In terms of digital logic circuits. The choice between
combinational and sequential logic depends on the nature of
operation being performed. Combinational logic circuits are
well-suited for operations where the output depends solely
on the current input, such as arithmetic operations.
Sequential logic circuits on the other hand, introduce
memory elements like flip-flops to store intermediate results
and maintain state information enabling more complex
operations and control logic within the ALU [10].

III. METHODOLOGY

The methodology employed for developing the 32-bit
Arithmetic Logic Unit (ALU) involves a systematic
approach, processing through several key stages. Initially,
the project team conducts an in-depth analysis of ALU
requirements, encompassing supported operations, operand
widths, and architectural constraints. This analysis informs
the creation of a detailed functional specification document,
outlining the ALU’s intended behavior and capabilities.
Following the conceptualization phase, the design process
commences with the definition of the ALU architecture.
Factors such as operand width, supported operations, and
data path organization are carefully considered. Critical
components like adders, multipliers, and logic gates are then
selected based on performance and efficiency criteria.
Subsequently, Register Transfer Level (RTL) descriptions
of the ALU modules are developed using a hardware
description language (HDL) like Verilog or VHDL,
capturing the functional behavior and interconnections of
the ALU components.
Moving to implantation, the RTL description are translated
into synthesizable Verilog code, adhering to coding
standards to ensure readability and maintainability.
Testbenches are developed to verify the correctness and
functionality of the ALU design through simulation-based
validation. Various verification techniques, including
functional and formal verification, are employed to ensure
the design meets specified requirements.
Once verified, the RTL code undergoes logic synthesis to
gee rate gate-level netlists, optimizing the design for target
FPGA or ASIC technologies. During system design, the
synthesized ALU IP core is integrated into the larger system
environment, alongside processors, memory, and peripheral
interfaces. System-level verification test are conducted to
validate correct integration and functionality within the
overall system context.

1.PASS

The ALU does not do any arithmetic or logic operations on
operand A; instead, it merely passes the value to the output
when select equals 5'b00000, which is the PASS operation.
Usually, you would run a simulation or test where you
change operand A's values and watch the data_out output to
make sure the PASS operation is operating as intended. The
value of operand A should be reflected in the output
data_out when select is set to 5'b00000.

 ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

 Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE)
 Vol. 10, Issue 6June 2024

For instance, if you choose 5'b00000 and set A to
32'h12345678, the output data_out should likewise be
32'h12345678. By simulating your Verilog module with
varying input values and determining whether the output
corresponds to the anticipated outcomes, you can confirm
this behaviour. You can determine that the PASS operation
has been confirmed if the output for each test case equals the
expected value.

2.INC

Operand A's value is increased by 1 by the ALU when select

equals 5'b00001, which is the INC (increment) operation.

The result is then output.

You would normally run a simulation or test where you

provide operand A different initial values and watch the

data_out output to make sure the INC operation is operating

as intended. The output data_out should equal the value of

operand A multiplied by one when select is set to 5'b00001.

For instance, the output data_out should be 32'h00000002 if
you set A to 32'h00000001 and choose 5'b00001. By
simulating your Verilog module with varying input values
and determining whether the output corresponds to the
anticipated outcomes, you can confirm this behaviour. You
can declare the INC operation verified if the output for each
test case equals the expected value.

3.DEC

Operand A's value is decreased by 1 by the ALU when
select equals 5'b00010, which is the DEC (decrement)
operation. The result is then output.
You would normally run a simulation or test where you
provide operand A different initial values and watch the
data_out output to make sure the DEC operation is operating
as intended. The output data_out should equal the value of
operand A decremented by 1 when select is set to 5'b00010.
For instance, the output data_out should be 32'h00000001 if
you set A to 32'h00000002 and choose 5'b00010. By
simulating your Verilog module with varying input values
and determining whether the output corresponds to the
anticipated outcomes, you can confirm this behaviour. You
can declare that the DEC operation is validated if the output
for each test case equals the expected value.

4.ADD

The ADD (addition) operation is represented by select equal
to 5'b00011, at which point the ALU adds the values of
operands A and B and output the results. Usually, you would
run a test or simulation in which you set

different initial values for operands A and B and watch the
data_out output to confirm that the ADD operation is
working as intended. The output data_out should equal the
sum of operands A and B when select is set to 5'b00011.
For instance, the output data_out should be 32'h00000005 (2
+ 3 = 5) if you set A to 32'h00000002, B to 32'h00000003, and

choose to 5'b00011. By simulating your Verilog module with

varying input values and determining whether the output

corresponds to the anticipated outcomes, you can confirm this

behaviour. You can declare the ADD operation verified if the

result for each test case equals the expected value.

5.SUB

The SUB (subtraction) operation is represented by select
equal to 5'b00100. In this case, the ALU subtracts operand
B's value from operand A and outputs the result. Usually,
you would run a simulation or test in which you set different
initial values for operands A and B and watch the data_out
output to confirm that the SUB operation is operating as
intended. The output data_out should equal the difference
between operand A and operand B when select is set to
5'b00100.
For instance, the output data_out should be 32'h00000002 (5
- 3 = 2) if you set A to 32'h00000005 and B to 32'h00000003,

and choose to 5'b00100. By simulating your Verilog module

with varying input values and determining whether the output

corresponds to the anticipated outcomes, you can confirm this

behaviour. You can declare the SUB operation verified if the

output for each test case equals the expected value.

6.MUL

The MUL (multiplication) operation is represented by select
equal to 5'b00101. In this case, the ALU multiplies the
values of operands A and B before outputting the result.
Usually, you would run a simulation or test where you
change the initial values for operands A and B and watch
the data_out output to make sure the MUL operation is
working as intended. The output data_out should equal the
product of operands A and B when select is set to 5'b00101.
For instance, the output data_out should be 32'h0000000F (5
* 3 = 15) if you set A to 32'h00000005 and B to
32'h00000003, and choose to 5'b00101. By simulating your
Verilog module with varying input values and determining
whether the output corresponds to the anticipated outcomes,
you can confirm this behaviour. You can determine that the
MUL operation is validated if the output for each test case
equals the expected value.

7.DIV

The ALU divides operand A's value by operand B's value and

outputs the quotient when select equals 5'b00110, which

 ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

 Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE)
 Vol. 10, Issue 6June 2024

is the DIV (division) operation.
Usually, you would run a simulation or test in which you set
different initial values for operands A and B and watch the
data_out output to confirm that the DIV operation is
operating as intended. The output data_out should equal the
quotient of operand A divided by operand B when select is
set to 5'b00110.
The output data_out should be 32'h00000003 (15 / 3 = 3),
for instance, if you set A to 32'h0000000F and B to
32'h00000003, and choose to 5'b00110. By simulating your
Verilog module with varying input values and determining
whether the output corresponds to the anticipated outcomes,
you can confirm this behaviour. You can declare the DIV
operation verified if the output for each test case equal to the
expected value.

8.MODULUS

The ALU calculates and outputs the remainder that results
from dividing the value of operand A by the value of
operand B when select equals 5'b00111, which is equivalent
to the MOD (modulus) operation.

Usually, you would run a simulation or test in which you set
different initial values for operands A and B and watch the
data_out output to confirm that the MOD operation is
operating as intended. When select is set to 5'b00111, the
output data_out should be equal to the remainder of operand
A divided by operand B.
The output data_out should be 32'h00000000 (15 % 3 = 0),
for instance, if you set A to 32'h0000000F and B to
32'h00000003, and choose to 5'b00111. By simulating your
Verilog module with varying input values and determining
whether the output corresponds to the anticipated outcomes,
you can confirm this behaviour. You can declare the MOD
operation verified if the output for each test case equals the
expected value.

9.ADC

The ALU computes and outputs the sum of operand A,
operand B, and the carry-in Cin when select equals
5'b01000, which is equivalent to the ADC (Addition with
Carry) operation.

In order to confirm that the ADC operation is operating as
intended, you would usually run a test or simulation in
which you change the initial values for operands A, B, and
Cin and then watch the data_out output. The output data_out
should equal the sum of operands A, B, and Cin when select
is set to 5'b01000.
For instance, the output data_out should be 32'h0000000D (5
+ 7 + 1 = 13) if you set A to 32'h00000005, B to
32'h00000007, Cin to 1 (signifying a carry-in), and select to

5'b01000. By simulating your Verilog module with varying
input values and determining whether the output
corresponds to the anticipated outcomes, you can confirm
this behaviour. You can declare the ADC operation verified
if the output for each test case equals the expected value.

10.2’S COMPLIMENT

The ALU calculates operand A's two's complement and
outputs the result when select equals 5'b01001, which is the
TWOC (Two's complement) operation. In order to confirm
that the TWOC operation is operating as intended, you
would normally run a test or simulation in which you
change operand A's initial values and watch the data_out
output. The output data_out should equal operand A's two's
complement when select is set to 5'b01001.
For instance, if you set A to 32'h00000005, then
32'hFFFFFFFB is the two's complement of 5, which is -5.
Thus, 32'hFFFFFFFB should be the output data_out when
select is set to 5'b01001. By emulating your Verilog module
with various operand A input values and determining
whether the output corresponds to the anticipated outcomes,
you can confirm this behaviour. You can declare the TWOC
operation verified if the output for each test case equals the
expected value.

11.OR

The ALU computes the bitwise OR operation between
operands A and B and outputs the result when select equals
5'b01010, which is the OR operation.

Usually, you would run a simulation or test and observe the

data_out output after changing the initial values of operands A

and B to confirm that the OR operation is working as intended.

A bitwise OR operation between A and B should produce the

output data_out when select is set to 5'b01010.

The outcome of the bitwise OR operation between A and B

would be 32'h000000FF (binary: 0000 0000 0000 0000 0000

0000 1111 1111), for instance, if you set A to 32'h0000000F

(binary: 0000 0000 0000 0000 0000 0000 0000 1111) and B to

32'h000000F0 (binary: 0000 0000 0000 0000 0000 0000 0000

1111 0000). Consequently, the output data_out should be

32'h000000FF when select is set to 5'b01010.

12.AND

The ALU computes the bitwise AND operation between
operands A and B and outputs the result when select equals
5'b01011, which represents the AND operation. You would
normally run a simulation or test where you provide
operands A and B different initial values and watch

 ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

 Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE)
 Vol. 10, Issue 6June 2024

the data_out output to make sure the AND operation is
working as intended. A bitwise AND operation between A
and B should produce the output data_out when select is set
to 5'b01011.
For instance, if you set A to 32'h0000000F (binary: 0000
0000 0000 0000 0000 0000 0000 1111) and B to
32'h000000F0 (binary: 0000 0000 0000 0000 0000 0000
1111 0000), then 32'h00000000 (binary: 0000 0000 0000
0000 0000 0000 0000 0000 0000) would be the outcome of
the bitwise AND operation between A and B. Therefore, the
output data_out should be 32'h00000000 when select is set
to 5'b01011.

13.NOT

The ALU computes the bitwise NOT operation on operand A

and outputs the result when select equals 5'b01100, which is
equivalent to the NOT operation. In order to confirm that the
NOT operation is operating as intended, you would usually
run a test or simulation in which you change operand A's
initial values and watch the data_out output. The output
data_out should be the outcome of bitwise NOTing A when
select is set to 5'b01100.
A bitwise NOT operation on A would result in
32'hFFFFFFF0 (binary: 1111 1111 1111 1111 1111 1111
0000), for instance, if you set A to 32'h0000000F (binary:
0000 0000 0000 0000 0000 0000 0000 1111). Thus,
32'hFFFFFFF0 should be the output data_out when select is
set to 5'b01100.
.

14.NOR

The ALU computes the bitwise NOR operation on operands
A and B and outputs the result when select equals 5'b01101,
which is the NOR operation.
In a typical simulation or test, you would give operands A
and B different initial values and watch the data_out output
to make sure the NOR operation is working as intended. A
bitwise NOR operation on A and B should produce the
output data_out when select is set to 5'b01101.
The outcome of the bitwise NOR operation on A and B would

be 32'hFFFFFF00 (binary: 1111 1111 1111 1111 1111 0000

0000) if, for instance, you set A to 32'h0000000F (binary:
0000 0000 0000 0000 0000 0000 0000 1111) and B to
32'h000000FF (binary: 0000 0000 0000 0000 0000 0000
1111 1111). Consequently, the output data_out should be
32'hFFFFFF00 when select is set to 5'b01101.

15.NAND

The ALU computes the bitwise NAND operation on
operands A and B and outputs the result when select equals
5'b01110, which is the NAND operation.

Usually, you would run a simulation or test and observe the
data_out output after changing the initial values of operands
A and B to confirm that the NAND operation is working as
intended. A bitwise NAND operation on A and B should
produce the output data_out when select is set to 5'b01110.
The outcome of the bitwise NAND operation on A and B
would be 32'hFFFFFF00 (binary: 1111 1111 1111 1111
1111 0000 0000) if, for instance, you set A to 32'h0000000F
(binary: 0000 0000 0000 0000 0000 0000 0000 1111) and B
to 32'h000000FF (binary: 0000 0000 0000 0000 0000 0000
1111 1111). Thus, 32'hFFFFFF00 should be the output
data_out when select is set to 5'b01110.

16.EX-OR

The ALU computes the bitwise XOR operation on operands
A and B and outputs the result when select equals 5'b01111,
which is the XOR operation.
Usually, you would run a simulation or test and observe the

data_out output after changing the initial values of operands A

and B to make sure the XOR operation is working as intended.

The output data_out should be the outcome of bitwise XORing

A and B when select is set to 5'b01111.

For instance, if you set A to 32'h0000000F (binary: 0000
0000 0000 0000 0000 0000 0000 1111 1111) and B to
32'h000000FF (binary: 0000 0000 0000 0000 0000 0000
1111 1111), then 32'h000000F0 (binary: 0000 0000 0000
0000 0000 0000 1111 0000) would be the outcome of the
bitwise XOR operation on A and B. Thus, 32'h000000F0
should be the output data_out when select is set to 5'b01111.

17.XNOR

The ALU calculates the bitwise XNOR operation on
operands A and B and outputs the result when select equals
5'b10000, which is the XNOR operation.

Usually, you would run a simulation or test and observe the
data_out output after changing the initial values of operands
A and B to make sure the XNOR operation is working as
intended. The output data_out should be the outcome of
bitwise XNORing A and B when select is set to 5'b10000.
When A and B are set to 32'h0000000F and 32'h000000FF,
respectively (binary: 0000 0000 0000 0000 0000 0000 1111
1111), for instance, the outcome of the bitwise XNOR
operation on A and B is 32'hFFFFFFFF (binary: 1111 1111
1111 1111 1111 1111 1111 1111 1111 1111). Thus, the
output data_out should be 32'hFFFFFFFF when select is set
to 5'b10000.

18.BOOLEAN AND

 ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

 Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE)
 Vol. 10, Issue 6June 2024

The Boolean AND operation on operands A and B is
computed by the ALU and output when select equals
5'b10001, which is the B_AND operation. You would
normally run a simulation or test where you provide
different initial values for operands A and B and watch the
data_out output to make sure the B_AND operation is
working as intended. A Boolean AND operation on A and B
should produce the output data_out when select is set to

5'b10001.

For instance, setting A to 32'hFFFFFFFF (binary: 1111 1111
1111 1111 1111 1111 1111 1111 1111 1111) and B to
32'h0000FFFF (binary: 0000 0000 0000 0000 1111 1111
1111 1111), for example, would result in 32'h0000FFFF
(binary: 0000 0000 0000 0000 1111 1111 1111 1111 1111).
This would be the outcome of the Boolean AND operation
on A and B. Therefore, the output data_out should be
32'h0000FFFF when select is set to 5'b10001.

19.BOOLEAN NAND

The Boolean NAND operation is computed by the ALU on

operands A and B, and the result is output when select equals

5'b10010, which is the B_NAND operation. You would
normally run a simulation or test where you provide
operands A and B different initial values and watch the
data_out output to make sure the B_NAND operation is
working correctly. The output data_out should be the
outcome of a Boolean NAND operation on A and B when
select is set to 5'b10010.
For instance, if you set A to 32'hFFFFFFFF (binary: 1111
1111 1111 1111 1111 1111 1111 1111 1111 1111) and B to
32'h0000FFFF (binary: 0000 0000 0000 0000 1111 1111
1111 1111), then 32'hFFFF0000 (binary: 1111 1111 1111
1111 0000 0000 0000) would be the outcome of the Boolean
NAND operation on A and B. Thus, 32'hFFFF0000 should
be the output data_out when select is set to 5'b10010.

20.BOOLEAN OR

The Boolean OR operation is computed by the ALU on
operands A and B, and the result is output when select
equals 5'b10011, which is the B_OR operation.

In a typical simulation or test, you would give operands A
and B different initial values and watch the data_out output
to make sure the B_OR operation is working as intended.
The output data_out should be the outcome of a Boolean OR
operation on A and B when select is set to 5'b10011.
As an illustration, if you set A to 32'hFFFFFFFF (binary:
1111 1111 1111 1111 1111 1111 1111 1111 1111 1111) and
B to 32'h0000FFFF (binary: 0000 0000 0000 0000 1111

1111 1111 1111), then 32'hFFFFFFFF is the outcome of the
Boolean OR operation on A and B. Thus, 32'hFFFFFFFF
should be the output data_out when select is set to 5'b10011.

21.BOOLEAN NOR

The Boolean NOR operation is computed by the ALU on

operands A and B, and the result is output when select equals

5'b10100, which is the B_NOR operation. In a typical
simulation or test, you would give operands A and B
different initial values and watch the data_out output to
make sure the B_NOR operation is working as intended.
The output data_out should be the outcome of a Boolean
NOR operation on A and B when select is set to 5'b10100.
For instance, if you set A to 32'hFFFFFFFF (binary: 1111
1111 1111 1111 1111 1111 1111 1111 1111 1111 1111) and
B to 32'h0000FFFF (binary: 0000 0000 0000 0000 1111
1111 1111 1111), then 32'h00000000 (binary) would be the
outcome of the Boolean NOR operation on A and B. Hence,
the output data_out should be 32'h00000000 when select is
set to 5'b10100.

22.BOOLEAN XOR
The Boolean Exclusive OR (XOR) operation on operands A
and B is computed by the ALU and output when select
equals 5'b10101, which is equivalent to the B_EX_OR
operation. You would normally run a simulation or test
where you provide different initial values for operands A
and B and watch the data_out output to make sure the
B_EX_OR operation is working correctly. The output
data_out should be the outcome of a Boolean XOR
operation on A and B when select is set to 5'b10101.
For instance, setting A to 32'hAAAAAAAA (binary: 1010
1010 1010 1010 1010 1010 1010 1010) and B to
32'h55555555 (binary: 0101 0101 0101 0101 0101 0101
0101 0101), for instance, would result in 32'hFFFFFFFF
(binary: 1111 1111 1111 1111 1111 1111 1111 1111). Thus,
32'hFFFFFFFF should be the output data_out when select is
set to 5'b10101

23.BOOLEAN XNOR
The ALU computes the Boolean Exclusive NOR (XNOR)
operation on operands A and B and outputs the result
when select equals 5'b10110, which corresponds to the
B_EX_NOR operation.
You would normally run a simulation or test where you
provide different initial values for operands A and B and
watch the data_out output to make sure the B_EX_NOR
operation is working correctly. The output data_out
should be the outcome of doing a Boolean XNOR
operation on A and B when select is set to 5'b10110

 ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

 Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE)
 Vol. 10, Issue 6June 2024

For instance, the outcome of the Boolean XNOR
operation on A and B would be 32'h00000000 (binary: 0000
0000 0000 0000 0000 0000 0000 0000) if you set A to
32'hAAAAAAAA (binary: 1010 1010 1010 1010 1010 1010
1010 1010) and B to 32'h55555555 (binary: 0101 0101 0101
0101 0101 0101 0101 0101 0101 0101 0101). Therefore, the
output data_out should be 32'h00000000 when select is set
to 5'b10110.

24.LEFT SHIFT

[6] proposed a system, this paper presents an effective field
programmable gate array (FPGA)-based hardware
implementation of a parallel key searching system for the
brute-force attack on RC4 encryption. The design employs
several novel key scheduling techniques to minimize the
total number of cycles for each key search and uses on-chip
memories of the FPGA to maximize the number of key
searching units per chip.. Compared to current designs,
SEDAAF uses 25% less power and has a power delay
product that is 17% lower.

25.RIGHT SHIFT

The ALU shifts the operand A's bits one position to the right
using a logical right shift operation when select equals
5'b11000, which is the same as the R_SHIFToperation.

You can run a test or simulation in which you change the
operand A's initial values and watch the data_out output to
confirm that the R_SHIFT operation is operating as
intended. The output data_out should be the outcome of
moving the bits of A one position to the right when select is
set to 5'b11000. For instance, the logical right shift operation
on A would produce 32'h55555555 (binary: 0101 0101 0101
0101 0101 0101) if you set A to 32'hAAAAAAAA (binary:
1010 1010 1010 1010 1010 1010 1010 1010). Consequently,
the output data_out should be 32'h55555555 when select is
set to 5'b11000.

26.COMPARATOR

The COMP operation is represented by select equal to
5'b11001, at which point the ALU compares the operands A
and B. You can run a test or simulation in which you change
the values of operands A and B and watch the data_out
output to confirm that the COMP operation is operating as
intended. Whether or not A equals B should be indicated in
the output data_out.

The output data_out should be 1'b1, for instance, if you set
A to 32'h00000001 and B to 32'h00000001, showing that A
and B are equal. In contrast, the output data_out should be
1'b0 if A is set to 32'h00000001 and B is set to
32'h00000000, indicating that A is not equal to B.

27.PARITY CHECKER

The ALU checks the operand A for parity when select
equals 5'b11010, which is the result of the
PARITY_CHECK operation.
In order to confirm that the PARITY_CHECK operation is
operating as intended, you can run a test or simulation in
which you can vary the value of operand A, which is a
binary number, and then watch the data_out output.
Whether or not there are even or odd number of set bits
(ones) in A should be indicated by the output data_out.
For instance, the output data_out should be 1'b1 if you set A
to 32'h00000001, which has one set bit, indicating that A
has odd parity. In contrast, the output data_out should be
1'b0 if you set A to 32'h00000003, which has two set bits,

indicating that A has even parity.

28.PARITY GENERATOR

The ALU creates a parity bit for the operand A when select
equals 5'b11011, which is the result of the PARITY_GEN
operation.
You can run a test or simulate the PARITY_GEN operation
by changing the values of operand A, which is a binary
number. This will allow you to confirm that the operation is
operating as intended. You can see the output data_out,
which should contain A followed by its generated parity bit,
after setting the value of A.
The output data_out should be 33'h0000000101, indicating
A followed by an additional bit (1'b1) indicating the
generated parity, if, for instance, you set A to
32'h00000001, which has one set bit. Similarly, the output
data_out should be 33'h0000000300, indicating A followed
by 1'b0 as the generated parity, if you set A to
32'h00000003, which has two set bits.

29.BINARY TO GRAY

Operand A's binary representation is transformed into its
corresponding Grey code representation by the ALU when
select equals 5'b11100, which is associated with the BIN TO
GRAY operation. You can run a test or simulate the
BIN2GRAY operation by changing the values of operand A,
which is a binary number. This will allow you to confirm
that the operation is working as intended. You can see the
output data_out, which should have the Grey code
representation of A, after setting the value of A.

 ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

 Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE)
 Vol. 10, Issue 6June 2024

For instance, the output data_out should be
32'h00000001, indicating that the Grey code representation
of 1 is also 1, if you set A to 32'h00000001, the binary
representation of 1. Similarly, the output data_out should be
32'h00000011, indicating that the Grey code representation
of 2 is 3, if you set A to 32'h00000010, which is the binary
representation of 2.

30.GRAY TO BINARY

The Grey code representation of operand A is transformed
into its corresponding binary representation by the ALU
when select equals 5'b11101, which is associated with the
GRAY2BIN operation.
Operand A is a Grey code number. You can run a test or
simulation in which you enter different values for operand A
to confirm that the GRAY2BIN operation is working as
intended. You can see the output data_out, which should
have the binary representation of the matching Grey code
number, after setting the value of A.
For instance, the output data_out should be 32'h00000001,
indicating that the binary representation of the Grey code 1
is also 1, if you set A to 32'h00000001, which is the Grey
code representation of 1. Similarly, the output data_out
should be 32'h00000010 if you set A to 32'h00000011,
which is the Grey code representation of 3. This indicates
that the binary representation of the Grey code 3 is 2.

31.CLOCK DIVIDER

Clock division is the behaviour when the select input is set
to 5'b11110, which is equivalent to the CLK_DIV
operation in the previously provided Verilog code. Starting
Point:
The clock divider input, clk_div, is sent to the module.
There are additional inputs available, including clk, A, B,
select, and Cin.
Logic of Clock Division:
The always block, which is responsive to the clock's
positive edge (posedge clk), is where the clock division
logic is implemented.
The clock division operation is enabled when 5'b11110,
or CLK_DIV, is entered into the select input.
The code within the always block performs the clock
division logic if the select input corresponds to clock
division and the ALU is active (alu_clk_enable is high). The
clock division logic is merely a placeholder (data_out <=
{32'b0, A};) and not an actual implementation in the code
that is provided. As a result, the input is effectively passed
through without any clock division because the output
data_out stays the same as the input A. Results:

If the select input is set to 5'b11110, the output data_out will
be the same as the input A.

32.MANCHESTER ENCODING

Manchester coding is carried out by the Verilog code when
the select input is 5'b11111, which is equivalent to the
MANCHESTER operation. Manchester coding uses
transitions inside the bit period to represent each bit in the
encoding.
Starting Point:
Initialization is done for variables such as
encoded_data, bit_index, and previous bit.
The encoded Manchester data is kept in a register
called encoded_data.
The counter bit_index is used to record the bit that
is currently being processed.
The value of the previously encoded bit is stored
in previous_bit.
Manchester Encoding Theory:
[4] proposed a system, this paper presents an effective field
programmable gate array (FPGA)-based hardware
implementation of a parallel key searching system for the
brute-force attack on RC4 encryption. The design employs
several novel key scheduling techniques to minimize the
total number of cycles for each key search and uses on-chip
memories of the FPGA to maximize the number of key
searching units per chip.

Every clock cycle, this process is repeated, encoding every
bit of the input A data into Manchester-coded format.
Results:
Lastly, the encoded Manchester data that is kept in
encoded_data is updated in the output data_out.

IV. DESIGNE AND IMPLENTATION OF ALU

In this section, we describe the design and implementation
of the 32-bit ALU using Verilog HDL on Artix 7 FPGA.
We first define the input and output ports of the ALU, then
we explain the operation codes and the internal modules,
and finally we present the test bench used to verify the
functionality of the ALU.

A. Inputs and output ports

The ALU has two input ports and one output port, the input
ports are data_in and select. The Output port is data_out. The
data_in port is a 32-bit wire that represents the input operand
for the ALU. The select port is a 5-bit wire that represents the
operation code for the ALU. The clk port is a 1-bit wire that
represents the clock signal for the ALU. The

 ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

 Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE)
 Vol. 10, Issue 6June 2024

data_out port is a 64-bit reg that represents the output
result of the ALU.

B. Operation cod

The ALU supports 32 different operations, as listed in
Table 1. Each operation has a corresponding 5-bit operation
code, which is assigned to the select port. The ALU is
designed using a modular approach, where each operation is
implemented as a separate case in a combinational always
block. The always block is triggered by the rising edge of
the clock port, and assigns the appropriate value to the
data_out port, depending on the operation code.

TABLE 1: INSTRUCTION SET OF ALU

Select Line Input Operation Bit Width

00000 PASS 32
00001 INC 32
00010 DEC 32
00011 ADD 32
00100 SUB 32
00101 MUL 32
00110 DIV 32
00111 MODULUS 32
01000 ADC 32
01001 2’S COMP 32
01010 OR 32
01011 AND 32
01100 NOT 32
01101 NOR 32
01110 NAND 32
01111 EX-OR 32
10000 EX-NOR 32
10001 B_AND 32
10010 B_NAND 32
10011 B_OR 32
10100 B_NOR 32
10101 B_EX_OR 32
10110 B_EX_NOR 32
10111 LEFT SHIFT 32
11000 RIGTH SHIFT 32
11001 COMPARATOR 32
11010 PARITY 32

 CHECKER
11011 PARITY 32

 GENERATOR
11100 BIN TO GRAY 32
11101 GRAY TO BIN 32
11110 CLK_DIV 32
11111 MANCHESTER 32
Data_out Output 64

RESULTS AND SIMULATIONS

1 UNIT TESTING:

Each operation supported by ALU module was individually
tested to verify its correctness and adherence to the specified
behaviour. Test cases were designed to cover different input
combinations and edge cases for each operation, ensuring
comprehensive coverage. Assertion and monitors were
utilized within the Verilog Testbench to check the expected
output against the actual output produced by the ALU
module.
2 INTEGRATION TESTING:
The ALU module was integrated into layer system or
environment to assess its compatibility and interoperability
with other components. Integration test were conducted to
evaluate the ALU’s interaction with external modules, such
as clock generators, input/output interfaces and memory
units. Compatibility tests were performed to ensure
seamless integration and communication between the ALU
and the rest of the system.
3 FUNCTIONAL TESTING:
Comprehensive functional testing was conducted to validate
the ALU compliance with the specified requirements and
operation codes. Test cases covered a wide range of
operations, including arithmetical operations (addition,
subtraction, multiplication, division), logical operations
(AND, OR, XOR), shift operations (left shift, right shift)
and special operations (comparator, parity Checker). Input
stimuli were provided to the ALU module through the test
bench, and the resulting output were compared against
expected values to verify correctness.

Fig: PASS AND INCREMENT

Fig: DECREMENT

 ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

 Available online at
www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE)
 Vol. 10, Issue 6June 2024

Fig: ADDITION

Fig: ADDITION WITH CARRY

Fig: SUBTRACTION Fig: 2’S COMPLIMENT

Fig: MULTIPLICATION Fig: OR

Fig: AND

Fig: DIVISION

Fig: MODULUS

Fig: NOT

 ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

 Available online at
www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE)
 Vol. 10, Issue 6June 2024

Fig: NOR

Fig: NAND

Fig: EX_OR

Fig: EX-NOR

Fig: B_AND

Fig: B_NAND

Fig: B_OR

Fig: B_NOR

Fig: B_EX_OR

Fig: B_EX_NOR

Fig: LEFT SHIFT

Fig: RIGHT SHIFT

 ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

 Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE)
 Vol. 10, Issue 6June 2024

Fig: COMPARATOR
Fig: MANCHESTER

Fig: PARITY CHECKER

Fig: PARITY GENERATOR

Fig: BINARY TO GRAY

Fig: GRAY TO BINARY

Fig: CLK_DIV

Fig: SCHEMATIC

In this research, we described the design and
implementation of an Artix 7 FPGA-based 32-bit ALU
using Verilog HDL. 32 distinct operations are supported by
the ALU, some of which are new and beneficial to
cryptographic processors. With a modular and hierarchical
design, the ALU implements each operation as a distinct
case within a combinational always block. Vivado 2018.1 is
used to simulate and synthesise the ALU, and a test bench is
used to confirm its functionality.
Based on the schematic results, the ALU has 1005 nets, 134
I/O ports, and 61 cells. The ALU can be used with the IEEE
754 floating-point standard.
mathematical situations, including overflow, underflow, and
division by zero. Additionally, the ALU has flags for carry,
negative, and zero outcomes. The suggested ALU design
has a number of benefits over the current one, including
minimal complexity and size, easy scalability and reuse, and
support for a broad variety of operations and data types.
Applications such as digital signal processing, wireless
communication, and embedded systems that call for flexible
and high-performance arithmetic and logic operations can
all benefit from the suggested ALU design.

VI. CONCLUSION

In conclusion, the development of a 32-bit arithmetic logic
unit presented in this paper showcases the efficiency and
versatility of hardware-based solution for digital computing
applications. By leveraging the capabilities of Verilog
hardware description language and FPGA hardware, we
have successfully implemented an alu capable of executing
32 distinct arithmetic and logical operations based on select
lines.

 ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

 Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
 (IJARMATE)
 Vol. 10, Issue 6June 2024

The flexibility provided by the 5-bit control input
enables a wide range of arithmetic and logical computations,
making the alu suitable for diverse digital computing task.
Whether it’s performing basic arithmetic operations, bitwise
logic operations, or more complex competitions, the alu
offers a reliable and efficiency solution.
Moreover, the incorporation of features such as clock gating
for power optimization and efficient resource utilization
highlights our commitment to enhance performance while
minimising energy consumption hardware footprint.
Simulation and synthesis results have validated the
correctness and efficiency of the ALU design, confirming its
suitability for Practical deployment in various digital
computing scenarios. This project underscores the
importance of hardware-based implementation in meeting
the computational demands of modern applications.
Looking ahead, further optimisation and refinement of the
ALU design cloud yield even greater performance
improvements and expand its applicability across a broader
spectrum of digital computing domains. As technology
continue to evolve, hardware solutions like ALU presented
here will remain crucial component in driving innovation
and progress in the field of digital computing.

VII. FUTURE WORKS

Future development on this topic could include
the following:

 putting into practice the difficult conversion
process from grey to binary, which calls for a
different module.

 employing strategies like clock gating and
pipelining to optimise the ALU design for speed
and power usage.

 combining the ALU with additional parts,

including a control unit, memory, and register file,
to create a whole processor.

VIII. REFERENCES
[1] P. A. David and H.L. John, “Computer Organization

and Design”, Morgan Kaufmann, 2005.
[2] D. Michel, A. Murali and S. Per ,“Parallel Computer

and Organization Design”, Cambridge University Press,
2012.

[3] D. Neha, G. Nidhi, M. Anu “Hardware Efficient AES
for Image Processing with High Throughput”, IEEE
conference on NGCT 2015, Sep 2015, pp 932-935.

[4] Christo Ananth, Muthamil Jothi.M, M.Priya,
V.Manjula, “Parallel RC4 Key Searching System Based
on FPGA”, International Journal of Advanced Research
in Management, Architecture, Technology and
Engineering (IJARMATE), Volume 2, Special Issue 13,
March 2016, pp: 5-12.

[5] G. Jeong and J. Park, “Design of 32-bit RISC Processor
and efficient verification”, Proceedings of the 7th
Korea-Russia Infernational Symposium. KORUS,
2003, pp. 222-227.

[6] Christo Ananth, Muthamil Jothi.M, M.Priya,
V.Manjula, “Parallel RC4 Key Searching System Based
on FPGA”, International Journal of Advanced Research
in Management, Architecture, Technology and
Engineering (IJARMATE), Volume 2, Special Issue 13,
March 2016, pp: 5-12.

[7] Y. Kui and D. Yue-Hua., “32 Bit multiplication and
division ALU design based on RISC structure”,
International Joint Conference on Artificial Intelligence,
2009, p.p. 761-764.

[8] P. Bhavina and S. Vandana. , “To implement
Cryptographic model for secure communication on
FPGA using 32-bit ALU unit”, IEEE International
Conference on Signal and Image Processing, p.p. 440-
443.

[9] L. Khoi-Nguyen, D. Anh-Vu, D. Quoc-Minh and B.
Trong-Tu, “RTL Implementation for a Specific ALU of
the 32-bit VLIW DSP Processor Core” ,International
conference on advanced technologies for
communications (ATC’14), 2014, p.p.387-392.

[10] Y. Shao-Ying, L. Yuan-Te , L. Wei-Chi , and H. Terng-
Yin “Cost-Efficient Frequency-Domain MIMO–OFDM
Modem With an SIMD ALU-Based Architecture”, IEEE
TRANSACTIONS ON VERY LARGE SCALE
INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 12,
DECEMBER 2015, p.p. 2791-280

50

