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Abstract- 
 
This paper presents the design and implementation of 32-bit  
arithmetic logic unit capability of executing 32 distinct 
arithmetic and logic operation based on select lines. utilizing 
Verilog hardware description language (HDL) the ALU is 
synthesized on FPGA hardware offering a versatile solution 
for digital computing tasks. Selection of each operation is 
facilitated by 5-bit control input, enabling a broad spectrum 
of arithmetic and logic computations. The project 
emphasizes the ALU’S functionality and adaptability across 
various digital computing applications. North worthy 
features includes clock gating and power control 
optimization and efficiency utilization of hardware 
resources. The efficiency and correctness of ALU design are 
confirmed through stimulation and synthesis results, 
underscoring its utility and practical scenarios 
 
Keywords: Arithmetic Logic Unit, Verilog HDL, FPGA, 
Digital Design, Arithmetic Operations, logic Operations, 
Clock Gating and Pipelining. 
 
 

I. Introduction 
 
The arithmetic logic unit (ALU) is a fundamental 
component of digital computing systems responsible for 
performing arithmetic and logic operations on binary data. 
ALUs are critical in executing various computational tasks 
within processes, ranging from basic arithmetic operation to 
complex logic comparisons [2]. Their significance extends 
across various computing domains, including digital signal 

 
 
 
 
 
 
processing, data manipulation and control logic. By 
efficiently processing binary data, ALUs enable the 
execution of complex algorithms and facilitate the core 
functionality of computing devices.  
The scope of this project encompasses the design, 
simulation, synthesis and verification of the 32-bit ALU. 
Key tasks include defining the ALU architecture, 
implementing individual operations based on the select 
lines, ensuring proper clock gating for power optimization 
and conducting through testing to validate the functionality 
of each operation. The primary objective of this project is to 
design and implement a 32-bit ALU using Verilog HDL [5]. 
The ALU is intended to support a wide range of arithmetic, 
logical and bit wise operations providing essential 
functionality for a digital signal processing, data 
manipulation and control logic within a computer system. 
Through this endeavor, the objective is to deliver a versatile 
and efficient ALU solution capable of meeting the 
computational demands of modern computing systems [8].  
The designed ALU module accepts two 32-bit operands (A and 

B), along with the control signal for selecting the desired 

operation.  
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The ALU operates on a positive edge-triggered clock and 

delivers the computed results on a 64-bit output bus, ensuring 

compatibility with a wider range of digital computing system. 
 
 

II. LITERATURE SURVEY 
 
The literature review for the design project of 32-bit 
Arithmetic logic unit (ALU) encompasses several central 
areas pretending to digital logic circuitry and computer 
architecture. Firstly, a thorough exploration for ALU design 
technique Various methodologies and architectural 
approaches employed in constructing efficient ALUs. This 
includes investigating traditional architecture like ripple 
carry adders and carry lookahead adders, as well as modern 
designs incorporating pipelining and parallel processing for 
enhanced performance and thought put [1].  
Moreover, an examination of fundamental digital logic 
circuits, such as logical gates and flip flops, sheds lights on 
the underlying components, utilized within ALU 
architectures. Combinational and sequential logic circuits 
are studied for their integration into ALU design, 
contributing to overall functionality and efficiency [7].  
Within the context of computer architecture, the review 
delves into the role of ALU within the processor system and 
its interaction with other components like registers, control 
units and memory units. This encompasses an analysis of 
instruction set architectures (ISAs) and their influence on 
ALU design principles and the capabilities. Furthermore, 
optimization techniques aimed at improving ALU 
performance, area efficiency and power consumption are 
explored. This entails investigating design automation tools 
synthesis strategies and verification methodologies essential 
for the successful deployment and validation of alu designs. 
Recent advanced and research trends in ALU design 
constitute another critical aspect of the literature review, 
highlight novel approaches and emerging technologies 
shaping the future of ALU architecture. By examining 
recent research papers and academic publications, insight 
into key challenges and future directions in ALU research, 
including scalability, reliability and support for specialized 
computation tasks, are gained. Moreover, the review 
encompasses an analysis of existing solutions and 
implementation including open-source projects and 
academic resources, providing reference designs and code 
examples for educational and research purposes. Through 
this comprehensive literature review, the project in is 
equipped with valuable knowledge and resource to inform 
their ALU design and implementation processes effectively 
[7]. Comparison of approaches  
When comparing different approaches to ALU design, 
several factors come into play. Traditional approaches like 
ripple-carry adder offers simplicity and easy 
implementation, but may lack efficiency in terms of speed 
and area. On the other hand, carry-look ahead adder 
provides faster competition by reducing the propagation 
delay associated with carry propagation.  
Modern design incorporating pipelining and parallel processing 
techniques aim to further enhance performance by breaking 
down operations into smaller stages or processing multiple 
operations simultaneously. These approaches often 

required more complex circuitry but offers significant 
improvement in throughput [8].  
In terms of digital logic circuits. The choice between 
combinational and sequential logic depends on the nature of 
operation being performed. Combinational logic circuits are 
well-suited for operations where the output depends solely 
on the current input, such as arithmetic operations. 
Sequential logic circuits on the other hand, introduce 
memory elements like flip-flops to store intermediate results 
and maintain state information enabling more complex 
operations and control logic within the ALU [10]. 
 

III. METHODOLOGY 
 
The methodology employed for developing the 32-bit 
Arithmetic Logic Unit (ALU) involves a systematic 
approach, processing through several key stages. Initially, 
the project team conducts an in-depth analysis of ALU 
requirements, encompassing supported operations, operand 
widths, and architectural constraints. This analysis informs 
the creation of a detailed functional specification document, 
outlining the ALU’s intended behavior and capabilities.  
Following the conceptualization phase, the design process 
commences with the definition of the ALU architecture. 
Factors such as operand width, supported operations, and 
data path organization are carefully considered. Critical 
components like adders, multipliers, and logic gates are then 
selected based on performance and efficiency criteria. 
Subsequently, Register Transfer Level (RTL) descriptions 
of the ALU modules are developed using a hardware 
description language (HDL) like Verilog or VHDL, 
capturing the functional behavior and interconnections of 
the ALU components.  
Moving to implantation, the RTL description are translated 
into synthesizable Verilog code, adhering to coding 
standards to ensure readability and maintainability. 
Testbenches are developed to verify the correctness and 
functionality of the ALU design through simulation-based 
validation. Various verification techniques, including 
functional and formal verification, are employed to ensure 
the design meets specified requirements.  
Once verified, the RTL code undergoes logic synthesis to 
gee rate gate-level netlists, optimizing the design for target 
FPGA or ASIC technologies. During system design, the 
synthesized ALU IP core is integrated into the larger system 
environment, alongside processors, memory, and peripheral 
interfaces. System-level verification test are conducted to 
validate correct integration and functionality within the 
overall system context. 
 
1.PASS 
 
The ALU does not do any arithmetic or logic operations on 
operand A; instead, it merely passes the value to the output 
when select equals 5'b00000, which is the PASS operation. 
Usually, you would run a simulation or test where you 
change operand A's values and watch the data_out output to 
make sure the PASS operation is operating as intended. The 
value of operand A should be reflected in the output 
data_out when select is set to 5'b00000. 
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For instance, if you choose 5'b00000 and set A to 
32'h12345678, the output data_out should likewise be 
32'h12345678. By simulating your Verilog module with 
varying input values and determining whether the output 
corresponds to the anticipated outcomes, you can confirm 
this behaviour. You can determine that the PASS operation 
has been confirmed if the output for each test case equals the 
expected value. 

 
2.INC 

 
Operand A's value is increased by 1 by the ALU when select 
 
equals 5'b00001, which is the INC (increment) operation. 
 
The result is then output. 
 
You would normally run a simulation or test where you 

provide operand A different initial values and watch the 

data_out output to make sure the INC operation is operating 

as intended. The output data_out should equal the value of 

operand A multiplied by one when select is set to 5'b00001. 

 
For instance, the output data_out should be 32'h00000002 if 
you set A to 32'h00000001 and choose 5'b00001. By 
simulating your Verilog module with varying input values 
and determining whether the output corresponds to the 
anticipated outcomes, you can confirm this behaviour. You 
can declare the INC operation verified if the output for each 
test case equals the expected value. 

 
3.DEC 
 
Operand A's value is decreased by 1 by the ALU when 
select equals 5'b00010, which is the DEC (decrement) 
operation. The result is then output.  
You would normally run a simulation or test where you 
provide operand A different initial values and watch the 
data_out output to make sure the DEC operation is operating 
as intended. The output data_out should equal the value of 
operand A decremented by 1 when select is set to 5'b00010. 
For instance, the output data_out should be 32'h00000001 if 
you set A to 32'h00000002 and choose 5'b00010. By 
simulating your Verilog module with varying input values 
and determining whether the output corresponds to the 
anticipated outcomes, you can confirm this behaviour. You 
can declare that the DEC operation is validated if the output 
for each test case equals the expected value. 
 
4.ADD 
 
The ADD (addition) operation is represented by select equal 
to 5'b00011, at which point the ALU adds the values of 
operands A and B and output the results. Usually, you would 
run a test or simulation in which you set 

different initial values for operands A and B and watch the 
data_out output to confirm that the ADD operation is 
working as intended. The output data_out should equal the 
sum of operands A and B when select is set to 5'b00011.  
For instance, the output data_out should be 32'h00000005 (2  
+ 3 = 5) if you set A to 32'h00000002, B to 32'h00000003, and 

choose to 5'b00011. By simulating your Verilog module with 

varying input values and determining whether the output 

corresponds to the anticipated outcomes, you can confirm this 

behaviour. You can declare the ADD operation verified if the 

result for each test case equals the expected value. 

 
5.SUB 
 
The SUB (subtraction) operation is represented by select 
equal to 5'b00100. In this case, the ALU subtracts operand 
B's value from operand A and outputs the result. Usually, 
you would run a simulation or test in which you set different 
initial values for operands A and B and watch the data_out 
output to confirm that the SUB operation is operating as 
intended. The output data_out should equal the difference 
between operand A and operand B when select is set to 
5'b00100.  
For instance, the output data_out should be 32'h00000002 (5  
- 3 = 2) if you set A to 32'h00000005 and B to 32'h00000003, 

and choose to 5'b00100. By simulating your Verilog module 

with varying input values and determining whether the output 

corresponds to the anticipated outcomes, you can confirm this 

behaviour. You can declare the SUB operation verified if the 

output for each test case equals the expected value. 

 
6.MUL 

 
The MUL (multiplication) operation is represented by select 
equal to 5'b00101. In this case, the ALU multiplies the 
values of operands A and B before outputting the result. 
Usually, you would run a simulation or test where you 
change the initial values for operands A and B and watch 
the data_out output to make sure the MUL operation is 
working as intended. The output data_out should equal the 
product of operands A and B when select is set to 5'b00101.  
For instance, the output data_out should be 32'h0000000F (5  
* 3 = 15) if you set A to 32'h00000005 and B to 
32'h00000003, and choose to 5'b00101. By simulating your 
Verilog module with varying input values and determining 
whether the output corresponds to the anticipated outcomes, 
you can confirm this behaviour. You can determine that the 
MUL operation is validated if the output for each test case 
equals the expected value. 

 
7.DIV 
 
The ALU divides operand A's value by operand B's value and 

outputs the quotient when select equals 5'b00110, which 
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is the DIV (division) operation.  
Usually, you would run a simulation or test in which you set 
different initial values for operands A and B and watch the 
data_out output to confirm that the DIV operation is 
operating as intended. The output data_out should equal the 
quotient of operand A divided by operand B when select is 
set to 5'b00110.  
The output data_out should be 32'h00000003 (15 / 3 = 3), 
for instance, if you set A to 32'h0000000F and B to 
32'h00000003, and choose to 5'b00110. By simulating your 
Verilog module with varying input values and determining 
whether the output corresponds to the anticipated outcomes, 
you can confirm this behaviour. You can declare the DIV 
operation verified if the output for each test case equal to the 
expected value. 
 
8.MODULUS 
 
The ALU calculates and outputs the remainder that results 
from dividing the value of operand A by the value of 
operand B when select equals 5'b00111, which is equivalent 
to the MOD (modulus) operation. 

 
Usually, you would run a simulation or test in which you set 
different initial values for operands A and B and watch the 
data_out output to confirm that the MOD operation is 
operating as intended. When select is set to 5'b00111, the 
output data_out should be equal to the remainder of operand 
A divided by operand B.  
The output data_out should be 32'h00000000 (15 % 3 = 0), 
for instance, if you set A to 32'h0000000F and B to 
32'h00000003, and choose to 5'b00111. By simulating your 
Verilog module with varying input values and determining 
whether the output corresponds to the anticipated outcomes, 
you can confirm this behaviour. You can declare the MOD 
operation verified if the output for each test case equals the 
expected value. 

 
9.ADC 

 
The ALU computes and outputs the sum of operand A, 
operand B, and the carry-in Cin when select equals 
5'b01000, which is equivalent to the ADC (Addition with 
Carry) operation. 

 
In order to confirm that the ADC operation is operating as 
intended, you would usually run a test or simulation in 
which you change the initial values for operands A, B, and 
Cin and then watch the data_out output. The output data_out 
should equal the sum of operands A, B, and Cin when select 
is set to 5'b01000.  
For instance, the output data_out should be 32'h0000000D (5  
+ 7 + 1 = 13) if you set A to 32'h00000005, B to 
32'h00000007, Cin to 1 (signifying a carry-in), and select to 

 
5'b01000. By simulating your Verilog module with varying 
input values and determining whether the output 
corresponds to the anticipated outcomes, you can confirm 
this behaviour. You can declare the ADC operation verified 
if the output for each test case equals the expected value. 

 
10.2’S COMPLIMENT 

 
The ALU calculates operand A's two's complement and 
outputs the result when select equals 5'b01001, which is the  
TWOC (Two's complement) operation. In order to confirm 
that the TWOC operation is operating as intended, you 
would normally run a test or simulation in which you 
change operand A's initial values and watch the data_out 
output. The output data_out should equal operand A's two's 
complement when select is set to 5'b01001.  
For instance, if you set A to 32'h00000005, then 
32'hFFFFFFFB is the two's complement of 5, which is -5. 
Thus, 32'hFFFFFFFB should be the output data_out when 
select is set to 5'b01001. By emulating your Verilog module 
with various operand A input values and determining 
whether the output corresponds to the anticipated outcomes, 
you can confirm this behaviour. You can declare the TWOC 
operation verified if the output for each test case equals the 
expected value. 

 
11.OR 

 
The ALU computes the bitwise OR operation between 
operands A and B and outputs the result when select equals 
5'b01010, which is the OR operation. 

 
Usually, you would run a simulation or test and observe the 

data_out output after changing the initial values of operands A 

and B to confirm that the OR operation is working as intended. 

A bitwise OR operation between A and B should produce the 

output data_out when select is set to 5'b01010. 

 
The outcome of the bitwise OR operation between A and B 

would be 32'h000000FF (binary: 0000 0000 0000 0000 0000 

0000 1111 1111), for instance, if you set A to 32'h0000000F 

(binary: 0000 0000 0000 0000 0000 0000 0000 1111) and B to 

32'h000000F0 (binary: 0000 0000 0000 0000 0000 0000 0000 

1111 0000). Consequently, the output data_out should be 

32'h000000FF when select is set to 5'b01010. 
 

 
12.AND 

 
The ALU computes the bitwise AND operation between 
operands A and B and outputs the result when select equals 
5'b01011, which represents the AND operation. You would 
normally run a simulation or test where you provide 
operands A and B different initial values and watch 
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the data_out output to make sure the AND operation is 
working as intended. A bitwise AND operation between A 
and B should produce the output data_out when select is set 
to 5'b01011.  
For instance, if you set A to 32'h0000000F (binary: 0000 
0000 0000 0000 0000 0000 0000 1111) and B to 
32'h000000F0 (binary: 0000 0000 0000 0000 0000 0000 
1111 0000), then 32'h00000000 (binary: 0000 0000 0000 
0000 0000 0000 0000 0000 0000) would be the outcome of 
the bitwise AND operation between A and B. Therefore, the 
output data_out should be 32'h00000000 when select is set 
to 5'b01011. 

 
13.NOT 

 
The ALU computes the bitwise NOT operation on operand A 

and outputs the result when select equals 5'b01100, which is  
equivalent to the NOT operation. In order to confirm that the 
NOT operation is operating as intended, you would usually 
run a test or simulation in which you change operand A's 
initial values and watch the data_out output. The output 
data_out should be the outcome of bitwise NOTing A when 
select is set to 5'b01100.  
A bitwise NOT operation on A would result in 
32'hFFFFFFF0 (binary: 1111 1111 1111 1111 1111 1111  
0000), for instance, if you set A to 32'h0000000F (binary:  
0000 0000 0000 0000 0000 0000 0000 1111). Thus,  
32'hFFFFFFF0 should be the output data_out when select is  
set to 5'b01100.  
. 
 
14.NOR 

 
The ALU computes the bitwise NOR operation on operands 
A and B and outputs the result when select equals 5'b01101, 
which is the NOR operation.  
In a typical simulation or test, you would give operands A 
and B different initial values and watch the data_out output 
to make sure the NOR operation is working as intended. A 
bitwise NOR operation on A and B should produce the 
output data_out when select is set to 5'b01101.  
The outcome of the bitwise NOR operation on A and B would 

be 32'hFFFFFF00 (binary: 1111 1111 1111 1111 1111 0000 

0000) if, for instance, you set A to 32'h0000000F (binary: 
0000 0000 0000 0000 0000 0000 0000 1111) and B to 
32'h000000FF (binary: 0000 0000 0000 0000 0000 0000 
1111 1111). Consequently, the output data_out should be 
32'hFFFFFF00 when select is set to 5'b01101. 

 
15.NAND 

 
The ALU computes the bitwise NAND operation on 
operands A and B and outputs the result when select equals 
5'b01110, which is the NAND operation. 

Usually, you would run a simulation or test and observe the 
data_out output after changing the initial values of operands 
A and B to confirm that the NAND operation is working as 
intended. A bitwise NAND operation on A and B should 
produce the output data_out when select is set to 5'b01110. 
The outcome of the bitwise NAND operation on A and B 
would be 32'hFFFFFF00 (binary: 1111 1111 1111 1111 
1111 0000 0000) if, for instance, you set A to 32'h0000000F 
(binary: 0000 0000 0000 0000 0000 0000 0000 1111) and B 
to 32'h000000FF (binary: 0000 0000 0000 0000 0000 0000 
1111 1111). Thus, 32'hFFFFFF00 should be the output 
data_out when select is set to 5'b01110. 

 
16.EX-OR 

 
The ALU computes the bitwise XOR operation on operands 
A and B and outputs the result when select equals 5'b01111, 
which is the XOR operation.  
Usually, you would run a simulation or test and observe the 

data_out output after changing the initial values of operands A 

and B to make sure the XOR operation is working as intended. 

The output data_out should be the outcome of bitwise XORing 

A and B when select is set to 5'b01111. 

For instance, if you set A to 32'h0000000F (binary: 0000 
0000 0000 0000 0000 0000 0000 1111 1111) and B to 
32'h000000FF (binary: 0000 0000 0000 0000 0000 0000 
1111 1111), then 32'h000000F0 (binary: 0000 0000 0000 
0000 0000 0000 1111 0000) would be the outcome of the 
bitwise XOR operation on A and B. Thus, 32'h000000F0 
should be the output data_out when select is set to 5'b01111. 

 
17.XNOR 

 
The ALU calculates the bitwise XNOR operation on 
operands A and B and outputs the result when select equals 
5'b10000, which is the XNOR operation. 

 
Usually, you would run a simulation or test and observe the 
data_out output after changing the initial values of operands 
A and B to make sure the XNOR operation is working as 
intended. The output data_out should be the outcome of 
bitwise XNORing A and B when select is set to 5'b10000. 
When A and B are set to 32'h0000000F and 32'h000000FF, 
respectively (binary: 0000 0000 0000 0000 0000 0000 1111 
1111), for instance, the outcome of the bitwise XNOR 
operation on A and B is 32'hFFFFFFFF (binary: 1111 1111 
1111 1111 1111 1111 1111 1111 1111 1111). Thus, the 
output data_out should be 32'hFFFFFFFF when select is set 
to 5'b10000. 

 
18.BOOLEAN AND 
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The Boolean AND operation on operands A and B is 
computed by the ALU and output when select equals  
5'b10001, which is the B_AND operation. You would 
normally run a simulation or test where you provide 
different initial values for operands A and B and watch the 
data_out output to make sure the B_AND operation is 
working as intended. A Boolean AND operation on A and B 
should produce the output data_out when select is set to 

5'b10001. 
 
For instance, setting A to 32'hFFFFFFFF (binary: 1111 1111 
1111 1111 1111 1111 1111 1111 1111 1111) and B to 
32'h0000FFFF (binary: 0000 0000 0000 0000 1111 1111 
1111 1111), for example, would result in 32'h0000FFFF 
(binary: 0000 0000 0000 0000 1111 1111 1111 1111 1111). 
This would be the outcome of the Boolean AND operation 
on A and B. Therefore, the output data_out should be 
32'h0000FFFF when select is set to 5'b10001. 

 
19.BOOLEAN NAND 

 
The Boolean NAND operation is computed by the ALU on 

operands A and B, and the result is output when select equals 

5'b10010, which is the B_NAND operation. You would 
normally run a simulation or test where you provide 
operands A and B different initial values and watch the 
data_out output to make sure the B_NAND operation is 
working correctly. The output data_out should be the 
outcome of a Boolean NAND operation on A and B when 
select is set to 5'b10010.  
For instance, if you set A to 32'hFFFFFFFF (binary: 1111 
1111 1111 1111 1111 1111 1111 1111 1111 1111) and B to 
32'h0000FFFF (binary: 0000 0000 0000 0000 1111 1111 
1111 1111), then 32'hFFFF0000 (binary: 1111 1111 1111 
1111 0000 0000 0000) would be the outcome of the Boolean 
NAND operation on A and B. Thus, 32'hFFFF0000 should 
be the output data_out when select is set to 5'b10010. 

 
20.BOOLEAN OR 
 
 
The Boolean OR operation is computed by the ALU on 
operands A and B, and the result is output when select 
equals 5'b10011, which is the B_OR operation. 

 
In a typical simulation or test, you would give operands A 
and B different initial values and watch the data_out output 
to make sure the B_OR operation is working as intended. 
The output data_out should be the outcome of a Boolean OR 
operation on A and B when select is set to 5'b10011.  
As an illustration, if you set A to 32'hFFFFFFFF (binary: 
1111 1111 1111 1111 1111 1111 1111 1111 1111 1111) and 
B to 32'h0000FFFF (binary: 0000 0000 0000 0000 1111 

1111 1111 1111), then 32'hFFFFFFFF is the outcome of the 
Boolean OR operation on A and B. Thus, 32'hFFFFFFFF 
should be the output data_out when select is set to 5'b10011. 

 
21.BOOLEAN NOR 

 
The Boolean NOR operation is computed by the ALU on 

operands A and B, and the result is output when select equals 

5'b10100, which is the B_NOR operation. In a typical 
simulation or test, you would give operands A and B 
different initial values and watch the data_out output to 
make sure the B_NOR operation is working as intended. 
The output data_out should be the outcome of a Boolean 
NOR operation on A and B when select is set to 5'b10100.  
For instance, if you set A to 32'hFFFFFFFF (binary: 1111 
1111 1111 1111 1111 1111 1111 1111 1111 1111 1111) and 
B to 32'h0000FFFF (binary: 0000 0000 0000 0000 1111 
1111 1111 1111), then 32'h00000000 (binary) would be the 
outcome of the Boolean NOR operation on A and B. Hence, 
the output data_out should be 32'h00000000 when select is 
set to 5'b10100. 

 
22.BOOLEAN XOR 
The Boolean Exclusive OR (XOR) operation on operands A 
and B is computed by the ALU and output when select 
equals 5'b10101, which is equivalent to the B_EX_OR 
operation. You would normally run a simulation or test 
where you provide different initial values for operands A 
and B and watch the data_out output to make sure the 
B_EX_OR operation is working correctly. The output 
data_out should be the outcome of a Boolean XOR 
operation on A and B when select is set to 5'b10101.  
For instance, setting A to 32'hAAAAAAAA (binary: 1010 
1010 1010 1010 1010 1010 1010 1010) and B to 
32'h55555555 (binary: 0101 0101 0101 0101 0101 0101 
0101 0101), for instance, would result in 32'hFFFFFFFF 
(binary: 1111 1111 1111 1111 1111 1111 1111 1111). Thus, 
32'hFFFFFFFF should be the output data_out when select is 
set to 5'b10101 

 
23.BOOLEAN XNOR 
The ALU computes the Boolean Exclusive NOR (XNOR) 
operation on operands A and B and outputs the result 
when select equals 5'b10110, which corresponds to the 
B_EX_NOR operation.  
You would normally run a simulation or test where you 
provide different initial values for operands A and B and 
watch the data_out output to make sure the B_EX_NOR 
operation is working correctly. The output data_out 
should be the outcome of doing a Boolean XNOR 
operation on A and B when select is set to 5'b10110 
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For instance, the outcome of the Boolean XNOR 
operation on A and B would be 32'h00000000 (binary: 0000 
0000 0000 0000 0000 0000 0000 0000) if you set A to 
32'hAAAAAAAA (binary: 1010 1010 1010 1010 1010 1010 
1010 1010) and B to 32'h55555555 (binary: 0101 0101 0101 
0101 0101 0101 0101 0101 0101 0101 0101). Therefore, the 
output data_out should be 32'h00000000 when select is set 
to 5'b10110. 

 
24.LEFT SHIFT 

 
[6] proposed a system, this paper presents an effective field 
programmable gate array (FPGA)-based hardware 
implementation of a parallel key searching system for the 
brute-force attack on RC4 encryption. The design employs 
several novel key scheduling techniques to minimize the 
total number of cycles for each key search and uses on-chip 
memories of the FPGA to maximize the number of key 
searching units per chip.. Compared to current designs, 
SEDAAF uses 25% less power and has a power delay 
product that is 17% lower.  
 
25.RIGHT SHIFT 

 
The ALU shifts the operand A's bits one position to the right 
using a logical right shift operation when select equals 
5'b11000, which is the same as the R_SHIFToperation. 

 
You can run a test or simulation in which you change the 
operand A's initial values and watch the data_out output to 
confirm that the R_SHIFT operation is operating as 
intended. The output data_out should be the outcome of 
moving the bits of A one position to the right when select is 
set to 5'b11000. For instance, the logical right shift operation 
on A would produce 32'h55555555 (binary: 0101 0101 0101 
0101 0101 0101) if you set A to 32'hAAAAAAAA (binary: 
1010 1010 1010 1010 1010 1010 1010 1010). Consequently, 
the output data_out should be 32'h55555555 when select is 
set to 5'b11000. 

 
26.COMPARATOR 

 
The COMP operation is represented by select equal to 
5'b11001, at which point the ALU compares the operands A  
and B. You can run a test or simulation in which you change 
the values of operands A and B and watch the data_out 
output to confirm that the COMP operation is operating as 
intended. Whether or not A equals B should be indicated in 
the output data_out. 

The output data_out should be 1'b1, for instance, if you set 
A to 32'h00000001 and B to 32'h00000001, showing that A 
and B are equal. In contrast, the output data_out should be 
1'b0 if A is set to 32'h00000001 and B is set to 
32'h00000000, indicating that A is not equal to B. 

 
27.PARITY CHECKER 

 
The ALU checks the operand A for parity when select 
equals 5'b11010, which is the result of the 
PARITY_CHECK operation.  
In order to confirm that the PARITY_CHECK operation is 
operating as intended, you can run a test or simulation in 
which you can vary the value of operand A, which is a 
binary number, and then watch the data_out output. 
Whether or not there are even or odd number of set bits 
(ones) in A should be indicated by the output data_out.  
For instance, the output data_out should be 1'b1 if you set A 
to 32'h00000001, which has one set bit, indicating that A 
has odd parity. In contrast, the output data_out should be 
1'b0 if you set A to 32'h00000003, which has two set bits, 

indicating that A has even parity. 
 
28.PARITY GENERATOR 

 
The ALU creates a parity bit for the operand A when select 
equals 5'b11011, which is the result of the PARITY_GEN 
operation.  
You can run a test or simulate the PARITY_GEN operation 
by changing the values of operand A, which is a binary 
number. This will allow you to confirm that the operation is 
operating as intended. You can see the output data_out, 
which should contain A followed by its generated parity bit, 
after setting the value of A.  
The output data_out should be 33'h0000000101, indicating 
A followed by an additional bit (1'b1) indicating the 
generated parity, if, for instance, you set A to 
32'h00000001, which has one set bit. Similarly, the output 
data_out should be 33'h0000000300, indicating A followed 
by 1'b0 as the generated parity, if you set A to 
32'h00000003, which has two set bits. 

 
29.BINARY TO GRAY 

 
Operand A's binary representation is transformed into its 
corresponding Grey code representation by the ALU when 
select equals 5'b11100, which is associated with the BIN TO  
GRAY operation. You can run a test or simulate the 
BIN2GRAY operation by changing the values of operand A, 
which is a binary number. This will allow you to confirm 
that the operation is working as intended. You can see the 
output data_out, which should have the Grey code 
representation of A, after setting the value of A. 



               ISSN (ONLINE): 2454-9762 
ISSN (PRINT): 2454-9762                                                                                                          

                                                                                                                         Available online at www.ijarmate.com  
                         
                            
 International Journal of Advanced Research in Management, Architecture, Technology and Engineering     
 (IJARMATE)                
 Vol. 10, Issue 6June 2024 

For instance, the output data_out should be 
32'h00000001, indicating that the Grey code representation 
of 1 is also 1, if you set A to 32'h00000001, the binary 
representation of 1. Similarly, the output data_out should be 
32'h00000011, indicating that the Grey code representation 
of 2 is 3, if you set A to 32'h00000010, which is the binary 
representation of 2. 

 
30.GRAY TO BINARY 

 
The Grey code representation of operand A is transformed 
into its corresponding binary representation by the ALU 
when select equals 5'b11101, which is associated with the 
GRAY2BIN operation.  
Operand A is a Grey code number. You can run a test or 
simulation in which you enter different values for operand A 
to confirm that the GRAY2BIN operation is working as 
intended. You can see the output data_out, which should 
have the binary representation of the matching Grey code 
number, after setting the value of A.  
For instance, the output data_out should be 32'h00000001, 
indicating that the binary representation of the Grey code 1 
is also 1, if you set A to 32'h00000001, which is the Grey 
code representation of 1. Similarly, the output data_out 
should be 32'h00000010 if you set A to 32'h00000011, 
which is the Grey code representation of 3. This indicates 
that the binary representation of the Grey code 3 is 2. 
 

 
31.CLOCK DIVIDER 

 
Clock division is the behaviour when the select input is set 
to 5'b11110, which is equivalent to the CLK_DIV 
operation in the previously provided Verilog code. Starting 
Point:  
The clock divider input, clk_div, is sent to the module. 
There are additional inputs available, including clk, A, B, 
select, and Cin.  
Logic of Clock Division:  
The always block, which is responsive to the clock's 
positive edge (posedge clk), is where the clock division 
logic is implemented.  
The clock division operation is enabled when 5'b11110, 
or CLK_DIV, is entered into the select input.  
The code within the always block performs the clock 
division logic if the select input corresponds to clock 
division and the ALU is active (alu_clk_enable is high). The 
clock division logic is merely a placeholder (data_out <= 
{32'b0, A};) and not an actual implementation in the code 
that is provided. As a result, the input is effectively passed 
through without any clock division because the output 
data_out stays the same as the input A. Results: 

If the select input is set to 5'b11110, the output data_out will 
be the same as the input A. 
 
 
 
32.MANCHESTER ENCODING 
 
Manchester coding is carried out by the Verilog code when  
the  select  input  is  5'b11111,  which  is  equivalent  to  the  
MANCHESTER operation. Manchester coding uses  
transitions inside the bit period to represent each bit in the  
encoding.  
Starting Point:  
Initialization is done for variables such as 
encoded_data, bit_index, and previous bit.  
The encoded Manchester data is kept in a register 
called encoded_data.  
The counter bit_index is used to record the bit that 
is currently being processed.  
The value of the previously encoded bit is stored 
in previous_bit.  
Manchester Encoding Theory:  
[4] proposed a system, this paper presents an effective field 
programmable gate array (FPGA)-based hardware 
implementation of a parallel key searching system for the 
brute-force attack on RC4 encryption. The design employs 
several novel key scheduling techniques to minimize the 
total number of cycles for each key search and uses on-chip 
memories of the FPGA to maximize the number of key 
searching units per chip. 

 
Every clock cycle, this process is repeated, encoding every 
bit of the input A data into Manchester-coded format. 
Results:  
Lastly, the encoded Manchester data that is kept in 
encoded_data is updated in the output data_out. 
 
 

 
IV. DESIGNE AND IMPLENTATION OF ALU 

 
In this section, we describe the design and implementation 
of the 32-bit ALU using Verilog HDL on Artix 7 FPGA. 
We first define the input and output ports of the ALU, then 
we explain the operation codes and the internal modules, 
and finally we present the test bench used to verify the 
functionality of the ALU. 

 
A.  Inputs and output ports  

The ALU has two input ports and one output port, the input 
ports are data_in and select. The Output port is data_out. The 
data_in port is a 32-bit wire that represents the input operand 
for the ALU. The select port is a 5-bit wire that represents the 
operation code for the ALU. The clk port is a 1-bit wire that 
represents the clock signal for the ALU. The 
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data_out port is a 64-bit reg that represents the output 
result of the ALU. 
 
B.  Operation cod  

The ALU supports 32 different operations, as listed in 
Table 1. Each operation has a corresponding 5-bit operation 
code, which is assigned to the select port. The ALU is 
designed using a modular approach, where each operation is 
implemented as a separate case in a combinational always 
block. The always block is triggered by the rising edge of 
the clock port, and assigns the appropriate value to the 
data_out port, depending on the operation code. 
 
TABLE 1: INSTRUCTION SET OF ALU 
 
 

Select Line Input Operation Bit Width 
   

00000 PASS 32 
00001 INC 32 
00010 DEC 32 
00011 ADD 32 
00100 SUB 32 
00101 MUL 32 
00110 DIV 32 
00111 MODULUS 32 
01000 ADC 32 
01001 2’S COMP 32 
01010 OR 32 
01011 AND 32 
01100 NOT 32 
01101 NOR 32 
01110 NAND 32 
01111 EX-OR 32 
10000 EX-NOR 32 
10001 B_AND 32 
10010 B_NAND 32 
10011 B_OR 32 
10100 B_NOR 32 
10101 B_EX_OR 32 
10110 B_EX_NOR 32 
10111 LEFT SHIFT 32 
11000 RIGTH SHIFT 32 
11001 COMPARATOR 32 
11010 PARITY 32 

 CHECKER  
11011 PARITY 32 

 GENERATOR  
11100 BIN TO GRAY 32 
11101 GRAY TO BIN 32 
11110 CLK_DIV 32 
11111 MANCHESTER 32 
Data_out Output 64 

RESULTS AND SIMULATIONS 
 
1 UNIT TESTING: 
 
Each operation supported by ALU module was individually 
tested to verify its correctness and adherence to the specified 
behaviour. Test cases were designed to cover different input 
combinations and edge cases for each operation, ensuring 
comprehensive coverage. Assertion and monitors were 
utilized within the Verilog Testbench to check the expected 
output against the actual output produced by the ALU 
module.  
2 INTEGRATION TESTING:  
The ALU module was integrated into layer system or 
environment to assess its compatibility and interoperability 
with other components. Integration test were conducted to 
evaluate the ALU’s interaction with external modules, such 
as clock generators, input/output interfaces and memory 
units. Compatibility tests were performed to ensure 
seamless integration and communication between the ALU 
and the rest of the system.  
3 FUNCTIONAL TESTING:  
Comprehensive functional testing was conducted to validate 
the ALU compliance with the specified requirements and 
operation codes. Test cases covered a wide range of 
operations, including arithmetical operations (addition, 
subtraction, multiplication, division), logical operations 
(AND, OR, XOR), shift operations (left shift, right shift) 
and special operations (comparator, parity Checker). Input 
stimuli were provided to the ALU module through the test 
bench, and the resulting output were compared against 
expected values to verify correctness.  
 
 
 
 
 
 
 
 
 
 
 
 

Fig: PASS AND INCREMENT  
 
 
 
 
 
 
 
 
 

 
Fig: DECREMENT 
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Fig: ADDITION 

Fig: ADDITION WITH CARRY  
 
 
 
 
 
 
 
 
 

 
Fig: SUBTRACTION Fig: 2’S COMPLIMENT  

 
 
 
 
 
 
 
 
 
 

 
Fig: MULTIPLICATION Fig: OR  

 
 
 
 
 
 
 
 
 
 

Fig: AND 
 

Fig: DIVISION  
 
 
 
 
 
 
 
 
 
 

Fig: MODULUS 

 
 
 
 
 
 
 
 
 
 
 
Fig: NOT  
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Fig: NOR  
 
 
 
 
 
 
 
 
 
 

Fig: NAND  
 
 
 
 
 
 
 
 
 
 

Fig: EX_OR  
 
 
 
 
 
 
 
 
 

 
Fig: EX-NOR  

 
 
 
 
 
 
 
 
 

 
Fig: B_AND  

 
 
 
 
 
 
 
 

 
Fig: B_NAND 

 
 
 
 
 
 
 

Fig: B_OR  
 
 
 
 
 
 
 
 
 
 

Fig: B_NOR  
 
 
 
 
 
 
 
 
 
 
 

Fig: B_EX_OR  
 
 
 
 
 
 
 
 
 
 

Fig: B_EX_NOR  
 
 
 
 
 
 
 
 
 
 
Fig: LEFT SHIFT  

 
 
 
 
 
 
 
 
 
 
 
Fig: RIGHT SHIFT 
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Fig: COMPARATOR  
Fig: MANCHESTER  

 
 
 
 
 
 
 

 
Fig: PARITY CHECKER  

 
 
 
 
 
 
 
 
 
 

Fig: PARITY GENERATOR  
 
 
 
 
 
 
 
 
 
 

Fig: BINARY TO GRAY  
 
 
 
 
 
 
 
 

 
Fig: GRAY TO BINARY  

 
 
 
 
 
 
 
 
 
 

Fig: CLK_DIV 

 
 
 
 
 
 

 
Fig: SCHEMATIC 

 
In this research, we described the design and 
implementation of an Artix 7 FPGA-based 32-bit ALU 
using Verilog HDL. 32 distinct operations are supported by 
the ALU, some of which are new and beneficial to 
cryptographic processors. With a modular and hierarchical 
design, the ALU implements each operation as a distinct 
case within a combinational always block. Vivado 2018.1 is 
used to simulate and synthesise the ALU, and a test bench is 
used to confirm its functionality.  
Based on the schematic results, the ALU has 1005 nets, 134 
I/O ports, and 61 cells. The ALU can be used with the IEEE 
754 floating-point standard.  
mathematical situations, including overflow, underflow, and 
division by zero. Additionally, the ALU has flags for carry,  
negative, and zero outcomes. The suggested ALU design 
has a number of benefits over the current one, including 
minimal complexity and size, easy scalability and reuse, and 
support for a broad variety of operations and data types. 
Applications such as digital signal processing, wireless 
communication, and embedded systems that call for flexible 
and high-performance arithmetic and logic operations can 
all benefit from the suggested ALU design. 

 
VI. CONCLUSION 

 
In conclusion, the development of a 32-bit arithmetic logic 
unit presented in this paper showcases the efficiency and 
versatility of hardware-based solution for digital computing 
applications. By leveraging the capabilities of Verilog 
hardware description language and FPGA hardware, we 
have successfully implemented an alu capable of executing 
32 distinct arithmetic and logical operations based on select 
lines. 
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The flexibility provided by the 5-bit control input 
enables a wide range of arithmetic and logical computations, 
making the alu suitable for diverse digital computing task. 
Whether it’s performing basic arithmetic operations, bitwise 
logic operations, or more complex competitions, the alu 
offers a reliable and efficiency solution.  
Moreover, the incorporation of features such as clock gating 
for power optimization and efficient resource utilization 
highlights our commitment to enhance performance while 
minimising energy consumption hardware footprint.  
Simulation and synthesis results have validated the 
correctness and efficiency of the ALU design, confirming its 
suitability for Practical deployment in various digital 
computing scenarios. This project underscores the 
importance of hardware-based implementation in meeting 
the computational demands of modern applications.  
Looking ahead, further optimisation and refinement of the 
ALU design cloud yield even greater performance 
improvements and expand its applicability across a broader 
spectrum of digital computing domains. As technology 
continue to evolve, hardware solutions like ALU presented 
here will remain crucial component in driving innovation 
and progress in the field of digital computing. 
 
VII. FUTURE WORKS 
 
Future development on this topic could include 
the following: 
 

 putting into practice the difficult conversion 
process from grey to binary, which calls for a 
different module.

 employing strategies like clock gating and 
pipelining to optimise the ALU design for speed 
and power usage.

 
 combining the ALU with additional parts, 

including a control unit, memory, and register file, 
to create a whole processor.
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