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Abstract:  

The field of echocardiogram 

segmentation is explored in this study, which 

presents a new method that adopts ETC. 

When it comes to detecting cardiovascular 

diseases, echocardiography is crucial, and for 

correct clinical evaluations, proper 

segmentation is key. An improvement in the 

accuracy and consistency of delineating 

cardiac structures across time can be 

achieved with the incorporation of ETC, 

which seeks to increase the temporal 

coherence of segmented structures over 

successive frames. This work aims to 

optimize echocardiography segmentation 

algorithms using ETC, test the approach's 

efficacy across different datasets, and 

determine its influence on segmentation 

accuracy. By tackling these goals, the study 

hopes to increase diagnostic reliability and 

clinical decision-making by overcoming the 

present limits in echocardiography 

segmentation's temporal consistency. 
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I. Introduction  

 When assessing heart function in a 

clinical setting, ultrasonography (US) 

imaging is usually preferred. The fact that it 

is noninvasive, inexpensive, and available in 

real-time is a major factor in its appeal [1]. 87 



These benefits, however, are at the expense 

of worse picture quality when compared to 

other modalities, such as computed 

tomography (CT) scans and magnetic 

resonance imaging (MRI) [2]. This is why 

automated systems have always failed 

miserably when it comes to analyzing data 

from the United States. However, other 

recent studies have shown the accuracy of 

well-trained CNNs in segmenting the 

ventricles, atria, and myocardium, the three 

primary components of the heart [3–4]. Even 

intra-observer variability can be reached by 

the most effective neural networks. But until 

recently, the best US segmentation 

approaches relied on 2D convolutional neural 

networks (CNNs) trained to handle critical 

points in the cardiac cycle, namely the end-

diastolic (ED) and end-systolic (ES) instants 

[5-7]. One of the selling features of US for 

day-to-day clinical usage is its temporal 

richness, which is neglected in this 

concentration on static 2D pictures [8-9].  

 2D segmentation at ED and ES 

instants is where the temporal component is 

most often confirmed, as it offers context to 

the segmentation process [10]. A common 

way to evaluate the clinical performance of a 

segmentation method is by looking at the 

ejection fraction (EF), which is measured 

between the endocardial and extra ocular 

segmentations. This EF has been reported as 

a valuable indicator of various cardiovascular 

diseases [11–13], which explains why 2D 

segmentation is so popular. The EF ignores 

the frames that fall somewhere in the middle 

of the ED and ES sequences, which is a 

shame since these frames might help define 

additional diseases [14–17]. We were only 

able to find qualitative assessments based on 

global indices in the machine learning articles 

that have looked at the temporal consistency 

of 2D+time segmentation algorithms in the 

US up to now [18]. Consequently, we begin 

by providing a thorough evaluation of the 

limitations of SOTA approaches in creating 

segmentations that are constant over time, 

and then we provide measurable and 

clinically relevant measures to assess this 

consistency [19–20]. 

1.1 Motivation of the paper  

 Accurate and coherent temporal 

segmentation of cardiac structures over 

consecutive frames in echocardiogram 

recordings is a major difficulty, which is why 

Enforced Temporal Consistency (ETC) is 

being included into algorithms for 

echocardiography segmentation. When it 

comes to diagnosing and monitoring a wide 

range of cardiovascular disorders, 

echocardiography is essential. Precise 

segmentation of the heart's components is key 



to evaluating cardiac function and making 

informed clinical choices. On the other hand, 

current segmentation techniques have a hard 

time being consistent between frames, which 

might lead to inaccurate clinical evaluations 

and treatment choices. 

II. Background study 

A.Amer, X. Ye and F. Janan, [1] here, the 

author present ResDUnet, a straightforward 

deep learning network the author developed 

and refined for the express purpose of LV 

segmentation in echocardiogram pictures. 

The author have shown that cutting-edge U-

net can be enhanced with new ideas including 

dilated convolution, squeeze and excitation 

units, and residual blocks, leading to 

improved performance. Despite the fact that 

echocardiography pictures might be difficult 

due to ventricular wall ambiguity and LV size 

and shape fluctuation. 

 Chernyshov, A., et al. [5] the author 

studied multiple deep learning architectures 

for automated right heart segmentation in 

two-dimensional ultrasound data, with a 

particular emphasis on right ventricle 

assessment. All of the evaluated topologies 

produced accuracy values that were on par 

with the findings from related studies on the 

left ventricle as well as the inter-observer 

variability amongst knowledgeable readers. 

It seemed that the suggested modified U-Net 

design for key point detection (U-Net KP) 

offered the greatest advantages when 

weighing the requirements for accuracy, 

robustness, and speed. 

 Heena, A., et al. [7] the pixels of a 

region that produced neural net entries were 

employed by the algorithm described in the 

research. This process produced satisfactory 

results, demonstrating that training a neural 

network to recognize picture representations 

was feasible. Ultimately, a neural network 

was used to demonstrate the algorithm for 

classifying images, and a comparison of 

Mean Square Error, PSNR, SSIM, and 

variance from the experimental results and 

analysis shows that the algorithm performs 

better than the various methods currently in 

use for standard medical image databases and 

other image databases. 

 Li, H., et al. [9] when it comes to the 

diagnosis and evaluation of cardiovascular 

disorders, LVEF has clinical significance. In 

this work, the author suggests using 

EchoEFNet to reliably compute LVEF 

automatically. Using the CMU Echo and 

CAMUS datasets, the author evaluated 

EchoEFNet's segmentation and landmark 

detection capabilities. EchoEFNet operates 

well on the A4C and A2C perspectives of 

echocardiogram, according to the testing 

data. The clinical application requirements 



were met because of the 0.916 and 0.854 

consistencies between the estimated LVEF 

and clinical ground truth, respectively. 

 Paul, A. K., & Bhuiyan, Y. S. [13] 

because MobileNetV2 sacrifices some 

precision in favor of increased efficiency, it 

was ideal for low-power devices. Exception 

and InceptionV3 were better at acquiring 

high-quality visual data, but requiring more 

computer power. With its cutting-edge 

output, ResNet50 was a great option for a 

variety of computer vision applications. 

Although VGG16 was easy to use and 

performs exceptionally well, more 

computing complexity was required to 

produce the same results. EfficientNetB7 

takes into account model size, accuracy, and 

efficiency while still meeting a range of 

processing needs. 

 Ragnarsdottir, H., et al. [15] the 

author experimented with spatial-only and 

spatio-temporal techniques from single or 

multiple views to determine the severity of 

Parkinson's disease. A spatio-temporal 

convolutional model on several views was 

used to get the best performance, with the 

validation set's final prediction coming from 

the majority vote of those views. More data 

will help the models become more accurate 

for the held-out test group. These authors 

approach could greatly reduce the frequency 

of missed or postponed diagnoses of severe 

PH in neonates by improving the accuracy, 

consistency, and reliability of PH estimation. 

 T. Iqbal, et al. [17] In order to identify 

and categories cardiovascular 

neurocristopathy disorders, the majority of 

evaluations currently in publication 

concentrate on the course and remission of 

conditions connected to aberrant migration or 

formation of cardiac neural crest cells.  

2.1 Problem definition  

 The difficulty of attaining accurate 

segmentation in echocardiography—a vital 

imaging modality for the diagnosis of 

cardiovascular conditions—is the issue this 

study attempts to solve. The primary 

definition of the challenge centers on the 

requirement for improved temporal 

consistency in segmented structures between 

consecutive frames of echocardiogram 

images. The existing limits in the temporal 

coherence of echocardiogram segmentation 

make it difficult to reliably diagnose patients 

and provide correct clinical judgments. By 

putting forth a novel strategy that integrates 

Enforced Temporal Consistency (ETC) with 

echocardiogram segmentation methods, the 

research seeks to get over these restrictions. 

The main goals are to implement and 

optimize ETC, evaluate its effect on 



segmentation accuracy, and confirm its 

efficacy on a variety of datasets.  

III. Materials and methods 

 The materials and methodology 

utilized to apply and assess the Enforced 

Temporal Consistency (ETC) strategy in 

echocardiogram segmentation are described 

in this section. 

 

Figure 1: Overall architecture 

3.1 Dataset collection  

 The dataset was collected from 

Kaggle website 

https://www.kaggle.com/datasets/toygarr/ca

mus-dataset/data  

3.2 Echocardiography Segmentation using 

Enforced Temporal Consistency 

 The goal of the Enforced Temporal 

Consistency approach for echocardiography 

segmentation is to improve the accuracy of 

the delineation of the heart anatomy in 

ultrasound images. By utilizing the temporal 

coherence of cardiac components in 

successive frames during a cardiac cycle, 

ETC refines segmentation findings by 

analyzing and integrating data from various 

time points. ETC allows more accurate 

identification of anatomical structures such 

ventricles, atria, and myocardium by 

identifying and correcting segmentation 

mask errors caused by noise and motion 

artifacts. This method enhances patient care 

and treatment outcomes by improving the 

quality of echocardiography image analysis 

and making it easier to diagnose and monitor 

cardiac problems. 

 Whether these variables be retrieved 

from latent space or pictures, it is feasible to 

identify temporal discrepancies by tracking 

their evolution across time. To make the 

values similar across domains, normalization 

is a must. When we have an attribute a, which 

is the set of all possible values for that 

attribute in a domain d, we can normalize all 

of its temporal sequences 𝑠௔ using the 

following equation. 

𝑠௔ ←
௦ೌି௠௜௡(஺೏)

௠௔௫(஺೏)ି௠௜௡(஺೏)
 ----------- (1) 

 Referring to the attribute plots in 

figure 4, for instance, indicates that temporal 

inconsistencies or inconsistent inter-frame 

segmentations can exist if any of the 

attributes show significant, erratic 

fluctuations over time following 

normalization. The temporal smoothness of 

an attribute can be measured by computing its 



second-order derivative, or𝑑ଶ𝑠௔(𝑡)/𝑑𝑡ଶ. 

Thus, a small derivative indicates local 

smoothness, whereas a high derivative 

indicates intense variance. It is feasible to use 

this statistic as a discriminative indicator: 

1(𝑠௔, 𝑡) = ቚ
ௗమ௦ೌ(௧)

ௗ௧మ ቚ > 𝜏௔ ------ (2) 

 Being equal to 0 in all other 

circumstances and equal to 1 when the 

second-order derivative exceeds a 

predetermined threshold, 𝜏௔. in this instance, 

the maximum permitted deviation is 

represented by𝜏௔, which is exclusive to the 

attribute. 

The second-order derivative can be 

theoretically estimated in the following 

manner because cardiac time frames are 

discrete: 

ௗమ௦ೌ(௧)

ௗ௧మ ≈ 𝑠௔,௧ାଵ + 𝑠௔,௧ିଵ − 2𝑠௔,௧ ------ (3) 

 During the heart cycle, it assesses the 

synchronization of three consecutive 

numbers, much like a Palladian filter. Strong 

recall for temporal differences can be 

achieved by experimentally establishing 

seven thresholds𝜏௔, one for each attribute, 

using the maximum value discovered in the 

training data. In order to guarantee flawless 

precision for temporal discrepancies, these 

thresholds are then manually raised 

depending on the examination of evaluations 

on segmentation techniques. These graphs 

display the locations of the left ventricle, 

myocardium, and pericardium centers, in 

addition to local spikes along the temporal 

curve. These undesirable spikes can be 

lessened by temporal regularization, as will 

be covered in the next part. 

Algorithm 1: Enforced Temporal 

Consistency 

Input: 

 Echocardiography images obtained 

over multiple cardiac cycles. 

Steps: 

  Normalization: 

 For each attribute a, normalize the 

temporal sequence 𝑠௔ using:  

𝑠௔ ←
௦ೌି௠௜௡(஺೏)

௠௔௫(஺೏)ି௠௜௡(஺೏)
  

  Temporal Smoothness Calculation: 

 Compute the second-order 

derivative 
ௗమ௦ೌ(௧)

ௗ௧మ  for each 

normalized sequence𝑠௔. 

            Define the discriminative indicator 

ௗమ௦ೌ(௧)

ௗ௧మ ≈ 𝑠௔,௧ାଵ + 𝑠௔,௧ିଵ − 2𝑠௔,௧ 

  Approximation of Laplacian Filter: 



 Approximate the Laplacian filter 

as: 
ௗమ௦ೌ(௧)

ௗ௧మ ≈ 𝑠௔,௧ାଵ + 𝑠௔,௧ିଵ −

2𝑠௔,௧ 

  Threshold Determination: 

 Empirically determine thresholds 

𝑠௔(𝑡) from training data. 

 Manually adjust 𝑠௔(𝑡) based on 

segmentation method evaluations. 

  Identification of Temporal 

Inconsistencies: 

 Apply the discriminative indicator 

1𝑠௔(𝑡) to detect temporal 

inconsistencies. 

 Identify patterns such as spikes in 

ventricle and myocardium 

positions. 

Output: 

 Identification of temporally 

inconsistent patterns. 

 

 

IV. Results and discussion 

 The findings from the study or 

experiment are critically analyzed and 

interpreted in the results and discussion 

sections. These sections seek to address any 

limitations or uncertainties, examine the 

consequences of the results, and 

contextualize them within the body of 

existing knowledge. 

 

Figure 2: Segmented image 

4.1 Performance evaluation 

1. Accuracy: The fraction of samples 

with the right classification out of all 

samples. Mathematically: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(்௉ ା ்ே)

(்௉ ା ி௉ ା ்ே ା ிே)
 ----------- (4) 

2. Precision: Ratio of samples with 

accurate identification to total 

samples with accurate identification. 

Mathematically: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
்௉

்௉ ା ி௉
  ------------ (5) 

3. Recall (also known as sensitivity or 

true positive rate): The proportion of 

correctly classified samples out of 

the total number of actual samples. 

Mathematically: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
்௉

்௉ ା ிே
  -------------- (6) 

4. F1 score: A middle ground between 

accuracy and memory that strikes a 

harmonic mean. Mathematically: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2 ∗  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙 /

 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)   --------- (7) 
 

Table 1: Performance metrics comparison 

table 



 Algor

ithm 

Accu

racy  

Prec

ision 

Re

cal

l 

F-

mea

sure 

Exist

ing 

meth

ods  

 

 

RNN 0.88 0.84 0.8

5 

0.88 

ACM 0.89 0.81 0.8

3 

0.84 

TCI 0.90 0.91 0.9

2 

0.92 

 

Prop

osed 

meth

ods 

 

ETC 0.91 0.93 0.9

4 

0.95 

 

 

Figure 3: Performance metrics comparison 

chart 

 The table 1 and figure 3 shows 

performance of the current techniques, such 

as the Temporal Consistency Indicator (TCI), 

Active Contour Models (ACM), and 

Recurrent Neural Network (RNN), in 

echocardiogram segmentation showed 

differing degrees. RNN showed 0.88 

accuracy, 0.84 precision, 0.85 recalls, and 

0.88 F-measure. ACM obtained an F-

measure of 0.84, recall of 0.83, precision of 

0.81, and accuracy of 0.89. With an accuracy 

of 0.90, precision of 0.91, recall of 0.92, and 

F-measure of 0.92, TCI demonstrated 

exceptional performance. On the other hand, 

with an accuracy of 0.91, precision of 0.93, 

recall of 0.94, and F-measure of 0.95, the 

suggested approach, ETC, surpassed all other 

methods that were in use. These results imply 

that ETC provides improved segmentation 

precision and accuracy in comparison to 

existing methods, suggesting its potential as 

a useful supplement to echocardiography 

image processing algorithms. 

V. Conclusion  

 Conclusively, this study represents a 

noteworthy progression in the domain of 

echocardiogram segmentation by presenting 

an innovative method that incorporates 

Enforced Temporal Consistency (ETC). The 

study tackles a significant difficulty in 

achieving temporal coherence across 

successive frames, acknowledging the 

important function of echocardiography in 

identifying cardiovascular diseases and the 

critical importance of precise segmentation 

for accurate clinical assessments. The impact 

on segmentation accuracy is seen from the 

successful deployment and optimization of 

ETC in echocardiography segmentation 

algorithms. The suggested method helps to 

more consistently and reliably demarcate 



cardiac structures by improving the temporal 

consistency of segmented structures 

throughout time. With the potential to 

overcome current constraints on temporal 

consistency in echocardiogram 

segmentation, this innovation presents a 

viable path towards increased clinical 

decision-making and greater diagnostic 

reliability. On the other hand, with an 

accuracy of 0.91, precision of 0.93, recall of 

0.94, and F-measure of 0.95, the suggested 

approach, ETC, surpassed all other methods 

that were in use. The research ensures the 

generalizability and efficacy of the ETC-

integrated segmentation algorithm in a 

variety of clinical contexts by emphasizing 

the evaluation of its proposed approach 

across distinct datasets. The results of this 

study support advances that directly improve 

patient care by adding to the expanding body 

of knowledge in medical imaging and 

computer-aided diagnosis. 
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