

All Rights Reserved @ 2016 IJARMATE

346

Discovery and Composition of Semantic Web Services

Abstract— Flexible and dynamic interoperation of

autonomous information system often requires automated

combination of several highly distributed and heterogeneous

web services.web service composition aims to accelerate

rapid application development and service reuse as well as to

provide access to a variety of complex services. There are

several approaches developed for web service composition.

Graph Based Technique has been taken, which allows the

users and applications to discover, deploy, compose and

synthesize services automatically. The goal of semantic web

service composition is to provide machine -readable

descriptions of the web services. WSDL Language used for

describing the Web Services in terms of their,input, output,

precondition, effects and their process model. The salient

feature of this approach is its optimality and scalability, i.e.,

its ability to handle very large service repositories, and it’s

extremely efficient processing times for discovery and

composition queries as well as provides fine-grained

input/output interface.

Index Terms—Semantic, Web Services , Clustering, Graph

Based Technique.

I. INTRODUCTION

 Web Services make up a connection technology. It is a

way to connect services together into a service-oriented

architecture. Primary elements of Web Services are

Repository, Messaging, and Services. Web Services refers

to the technologies that allow for making connections.

Services are what you connect together using Web

Services. A service is the endpoint of a connection. The

technology of Web Service is the most likely connection

technology of service-oriented architectures. Web service

is a program accessible over the web that may affect some

action or change in the world (i.e., causes a side-effect).

Examples of such side-effects include a web base being

updated because of a plane reservation made over the

Internet, a device being controlled, etc. An important

future milestone in the Web’s evolution is making services

ubiquitously available. As automation increases, these

Web services will be accessed directly by the applications

rather than by humans. In this context, a Web service can

be regarded as a “programmatic interface” that makes

application to application communication possible. An

infrastructure that allows users to discover, deploy,

synthesize and compose services automatically is needed

in order to make Web services more practical.

1.1 Need Of Semantic Service Discovery And

Composition

To make services ubiquitously available we need a

semantics-based approach such that applications can

reason about a service’s capability to a level of detail that

permits their discovery, deployment, composition and

synthesis. Informally, a service is characterized by its

input parameters, the outputs it produces, and the side-

effect(s) it may cause. The input parameter may be further

subject to some pre-conditions, and likewise, the outputs

produced may have to satisfy certain post-conditions. For

discovery, composition, etc., one could take the syntactic

approach in which the services being sought in response to

a query simply have their inputs syntactically match those

of the query, or, alternatively, one could take the semantic

approach in which the semantics of inputs and outputs, as

well as a semantic description of the side-effect is

considered in the matching process.

1.2 Requirements for Web Service Composition

 Traditional composition approaches require human-

intensive involvement, making them time-consuming and

error prone. Therefore, the ability to automatically or

semi-automatically orchestrate web services in a short

timeframe is highly desirable. Generally Web Service

Composition has the following Phases..

 Specification Phase

 In this phase, the user specifies the goal he is trying to

achieve from creating a complex task to be achieved

through the composition of web services and produces an

abstract specification. The specification should have

enough detail to aid in creating the abstract specification

and include functional and non-functional requirements.

Functional requirements are constraints, control/data flow

and high-level goal of the complex task.Non-functional

aspects may include security policy, QoS constraints, etc.

Desired behavioral issues (i.e. termination conditions,

failure recovery requirements) should also be able to be

specified.

Planning Phase

 The planning phase takes the abstract specification

created in the specification phase and produces an abstract

composite workflow. If the specification did not contain

enough detail (i.e., it was a partial specification) or was

stated as P/E and goals, then the description needs to be

decomposed into simpler steps in this phase.

Validation Phase

 The validation phase takes an abstract composite

workflow that is an output of the planning phase to

address the following:

Ms.S. Jegatha,

ME Computer Science and Engineering,

Mookambigai College of Engineering,

Pudukkottai-622502

jegatha.hcc@gmail.com

Mr.N.Nagapaandian, M.E

Assistant Professor,

Mookambigai College of

Engineering,

Pudukkottai-622502

All Rights Reserved @ 2016 IJARMATE

347

• Syntactic validation: Is the workflow well-formed and

structurally correct (i.e. does not contain deadlocks,

infinite cycles, etc)? Syntactic validation may be handled

by the planning tool, depending on the approach used.

• Semantic validation: Does the plan satisfy user goals and

requirements/constraints that were detailed in the

specification phase?

If the user created more than one abstract composite

workflow in the planning phase, there may be multiple

candidates to validate. The result of the validation should

produce a syntactically and semantically optimal abstract

composite workflow.

Discovery Phase

The discovery phase takes the abstract composite

workflow, and finds suitable atomic services for each task

in the workflow by querying service repositories.

Execution and Monitoring Phase

 The execution and monitoring phase provides

deployment and execution of a newly created composite

service. This phase includes following control flows that

were specified in the workflow and recovery mechanisms

to ensure proper execution of composition.

Within Each phase the requirements needed for web

service composition:

• Specification phase: Provide an easy way for a user to

specify task goals, requirements and constraints without

extensive domain knowledge.

• Planning phase: Provide an automatic way to compose an

abstract workflow based on the specification.

• Validation phase: Provide techniques to ensure that the

composite process realized via an abstract workflow

satisfies the user’s stated task goals.

• Discovery phase: Provide a way to discover services that

satisfy task specifications in the workflow.

• Execution with monitoring phase: Provide a framework

for monitoring and executing service, and provide

automatic fault- handling mechanisms.

II. RELATED STUDIES

 M. Carman, L. Serafini, and P. Traverso, (2003)

‘Web Service Composition as Planning,’ in ICAPS 2003

Workshop on planning for web services, pp. 1636–1642.

 Web service composition problem can be

viewed as a planning problem in which state descriptions

are ambiguous and operator definitions are incomplete.

Discusses the problem of interpreting documents (which

describe the world state), and introduces a semantic type

matching algorithm. The matching algorithm together with

an interleaved search and execution algorithm allow for

basic automated service composition.

 Approach is based on data type matching and

interleaved search and execution for service composition.

Type matching algorithm based on the idea that the target

type needs to be shown to be a more general version of the

source. In this type matching algorithm,when we compare

the goal (target) type tgoal , to a particular service output

(source) type tout , we require that tgoal subset of M tout ,

which is to say that all documents conforming to the output

type also conform (form a subset of those conforming) to

the goal type after a certain mapping M has been applied to

them

• Services that are described in a standard and possibly

formal manner, i.e. all services which provide the same

functionality are called in the same way, require the

same inputs and produce the same outputs.

• Difficulties associated with the heterogeneity of the

web services planning domain, and are able to apply

techniques from “simpler” (or at least more

homogeneous) domains such as database query

processing.

 P. Hennig and W.T. Balke, (2010) ‘Highly

Scalable Web Service Composition Using Binary Tree-

Based Parallelization,’ IEEE Int. Conf. on Web Services,

pp. 123–130.

 Data intensive applications, e.g. in life sciences,

pose new efficiency challenges to the service composition

problem. Since today computing power is mainly increased

by multiplication of CPU cores, algorithms have to be

redesigned to benefit from this evolution. Framework is

developed for parallelizing service composition algorithms

investigating how to partition the composition problem into

multiple parallel threads. But in contrast to intuition, the

straightforward parallelization techniques do not lead to

superior performance as our baseline evaluation reveals. To

harness the full power of multi-core architectures, proposes

two novel approaches to evenly distribute the workload in a

sophisticated fashion

 Web service composition frameworks need a

representation model for compositions. Recently, binary

trees have shaped up as the most efficient method. Building

on these tree structures, framework for parallelization has

been designed which is to be self-contained. The main idea

is to create a binary tree for each composition request and

store all information of the current composition process in

this data structure.

• To detect and prevent composition loops by more

advanced techniques like computing hash values of

composition paths instead of just restricting the binary

tree depth.

• Loops are formed while compositing services which

plays the major problem as well as there no

methodology for searching the binary tree in a depth

manner.

O.Hatzi, D. Vrakas, M. Nikolaidou,(2011) ‘An

Integrated Approach to Automatic Semantic Web Service

Composition through Planning’, Transactions on Service

Computing,pp1-14

 It describes the integrated approach for

automatic semantic web composition through planning. An

important advantage of the composition is the composition

process, as well as the discovery of atomic services that

take part in the composition, are significantly facilitated by

incorporating of semantic information. OWL-S web

service descriptions are transformed into planning problem

described in a standardized fashion using PDDL.

 The proposed approach is based on transforming

the web service composition problem into a planning

problem and solving it after enrichment with semantic

All Rights Reserved @ 2016 IJARMATE

348

information extracted from OWL-S. In this way, extensive

research in AI planning can be applied to the area of web

service composition. The produced domain is described

using well-established standards, such as PDDL, while

solutions may be acquired using a variety of external

planners in a standard way. Independence from planning

techniques and algorithms is provided, enabling us to take

advantage of recent research advances. Solutions are

transformed back to OWL-S descriptions, which are

suitable for execution in any web service environment. The

approach facilitates the composition process, even for non-

expert users.

• Future goals include the addition of the OWL-S

descriptions of produced composite services in the registry

of available services, to explore the possibility to accelerate

the composition process.

• Moreover, it lies in our immediate plans to study ways to

enhance the approach with the ability to produce various

composite services according to non-functional user

preferences, dealing with pragmatic knowledge.

M. Klusch, A. Gerber, and M. Schmidt, (2005)

‘Semantic Web Service Composition Planning with

OWLS-Xplan,’ in Proceedings of the AAAI Fall

Symposium on Semantic Web and Agents.

 Present an OWL-S service composition planner,

called OWLS-Xplan, that allows for fast and flexible

composition of OWL-S services in the semantic Web.

OWLS-Xplan converts OWL-S 1.1 services to equivalent

problem and domain descriptions that are specified in the

planning domain description language PDDL 2.1, and

invokes an efficient AI planner Xplan to generate a service

composition plan sequence that satisfies a given goal.

Xplan extends an action based Fast Forward-planner with a

HTN planning and re-planning component.

 OWLS-Xplan consists of several modules for

pre processing and planning. It takes a set of available

OWL-S services, a domain description consisting of

relevant OWL ontologies and a planning query as input,

and returns a plan sequence of composed services that

satisfies the query goal. Xplan is a heuristic hybrid search

planner based on the FF-planner. It combines guided local

search with graph planning, and a simple form of

hierarchical task networks to produce a plan sequence of

actions that solves a given problem.

• During plan execution, the agent has to check for each

action of the plan whether its preconditions hold, or not.

• If at least one precondition is not satisfied, Xplan gets

informed about which facts are invalid, at which position

in the plan this problem occurs, and then checks whether

the original plan still can be executed.

• Otherwise, it tries to fix the problem by searching for an

alternative path in the connectivity graph from the actual

position in the plan to the goal state. In addition, it may

temporally block unnecessary actions to reduce the

search space, thereby avoiding a complete preprocessing

phase.

S. Oh, D. Lee, and S. Kumara, (2007) ‘Web service

planner (WSPR): an effective and scalable web service

composition algorithm,’ Int. Journal of Web Services

Research, vol. 4, no. 1, pp. 1–22.

 As the emergence of service-oriented

architecture provides a major boost for e-commerce agility,

the number of available Web services is rapidly increasing.

However, when there are a large number of Web services

available and no single Web service satisfies the given

request, one has compose multiple Web services to fulfill

the goal. Toward this problem, presents an AI planning

based Web service composition algorithm named as

WSPR.

 WSPR activates two-step search, First, it

computes the cost of achieving individual parameters

staring from ri to ro by conducting the forward search;

second, it approximates the optimal sequence of Web

services that connects ri to ro by conducting regression

search leveraging on the results obtained from the first step

as guidance.

• Running time of WSPR spent is more in the forward

reasoning stage due to the sheer number of Web

services to visit.

• Thus, in order to improve the overall speed of WSPR

better ways to be more informed about parameter space

are needed in that. It is in still in the formative stage as

far as publicly available Web services are concerned,

and, it is not found out that there are no compositions

with more than two Web services linked.

• Their results points out two lessons: first, composition

is in the formative stage as far as publicly available

Web services are concerned.

• Second, it is not easy to discover correlations between

Web services even while using the semantic description

matching. easy to discover correlations between Web

services even while using the semantic description

matching.

Rao and X. Su,(2004) ‘A Survey of Automated Web

Service Composition Methods,” in Semantic Web Services

and Web Process Composition’, vol. 3387, pp. 43 54.

 In today’s Web, Web services are created and

updated on the fly. It’s already beyond the human ability to

analysis them and generates the composition plan

manually. A number of approaches have been proposed to

tackle that problem. Most of them are inspired by the

researches in cross-enterprise workflow and AI planning.

This paper gives an overview of recent research efforts of

automatic Web service composition both from the

workflow and AI planning research community.

 AI planning problem can be described as a five

tuple <S, S0,G,A, i>, where S is the set of all possible

states of the world, S0 S denotes the initial state of the

world, G S denotes the goal state of the world the planning

system attempts to reach, A is the set of actions the planner

can perform in attempting to change one state to another

state in the world, and the translation relation S × A × S

defines the precondition and effects for the execution of

each action.g Workflow is a platform for the specification,

enactment and management of composite services. And

uses a static workflow generation method. A composite

service is modelled by a graph that defines the order of

execution among the nodes in the process. The graph is

All Rights Reserved @ 2016 IJARMATE

349

created manually but it can be updated dynamically.

• Because the web service environment is highly

complex it is not feasible to generate everything in an

automated way.

• Usually the highly automated methods are suitable for

generating the implementation skeletons that can be

refined into formal descriptions.

B. Srivastava and J. Koehler, (2003) ‘Web Service

Composition – Current Solutions and Open Problems,’ in

ICAPS workshop on Planning for Web Services, pp. 28

35.

 Composition of Web services has received

much interest to support business-to-business or enterprise

application integration. On the one side, the business world

has developed a number of XML-based standards to

formalize the specification of Web services, their flow

composition and execution. This approach is primarily

syntactical: Web service interfaces are like remote

procedure call and the interaction protocols are manually

written. On the other side, the Semantic Web community

focuses on reasoning about web resources by explicitly

declaring their preconditions and effects with terms

precisely defined in ontology. For the composition of Web

services, they draw on the goal-oriented inter referencing

from planning. discusses what makes the Web service

composition so special and derive challenges for the AI

planning community.

 A realistic application domain for Web services

(specically, trip planning) and highlight to what extent

business needs are addressed by the WSDL Web services

and the Semantic Web approaches. And investigating how

these approaches differ with respect to the modelling,

verification, and deployment of services and the respective

inference methods and runtime support that they assume.

For composition approach Industry Plan and Artificial

Planning has been discussed.

• The Semantic Web provides a process level

description of the service which, in addition to functional

information, models the preconditions and post

conditions of the process so that the evolution of the

domain can be logically inferred.

• It relies on ontology’s to formalize domain

concepts which are shared among services as well as

modelling flow composition problem occurs.

[8]Y. Yan, B.Xu, and Z.Gu,(2008) ‘ Automatic Service

Composition Using AND/OR Graph ,’ in 10th Conference

of E-Commerce Technology,pp.335-338.

 As SOC and Web service technology become

more widely used, large amounts of services need to be

efficiently and effectively composed to meet complex

businesses. This paper, proposed an approach to resolve the

composition problem over large-scale services. used an

inverted table as index for a quick service discovery, and

applied a Service Dependency Graph (SDG) and an

AND/OR graph as the algorithm basis for parallel

composition. Considering the semantic information

described in Web service, this approach also recognizes

and transmits the semantic relationships described in Web

Ontolosgy Language (OWL).

 A service discovery and composition model

based on the AND/OR graph to resolve the semantic

composition. The main idea is to construct an AND/OR

graph form a service dependency graph (SDG), applying a

bottom-up search algorithm REV* to find a sub-graph for

the solution. It is a effective method to find executions on

parallel, but it didn’t consider the scale of the services.

Besides, there have been many research on AND/OR graph

searching such as AO* algorithm. And presented a fast

service composition model using a inverted table to index

the services, also proposed a method to handle the semantic

relationship between I/O data.

• The functionalities of services are not

considered in the composition method. Obviously, this

will cause confusion when two services take and generate

exactly the same types of data.

• There is not a benchmark for evaluating a

composed service and the composition itself that is

widely accepted. For our algorithm, how to balance

getting the best solution against getting all the solutions

also depend on future experiments.

P

III. PROPOSED SYSTEM

Composition framework has the following characteristics

provide convenient fine-grained discovery mechanisms

that could help to discover services able to consume or

produce (a subset of) certain types of data as usually

required during composition,

Improve the response time of service discovery to process

requests very fast,

Support the integration of third party service registries as a

key activity in the composition phase,

Incorporate optimizations to improve the scalability of the

overall composition process,

 Find optimal service compositions by minimizing

different criteria such as the number of services or the

length of the composition to avoid complex,

unmanageable solutions. A graph-based framework

focused on the semantic input-output parameter matching

of services’ interfaces that efficiently integrates the

automatic service composition and semantic service

discovery

3.1 GRAPH BASED TECHNIQUE

 The Proposed system is graph based framework

for automatic web service composition. The process is

triggered by a composition request that specifies the user

requirements in terms of inputs and the expected outputs,

as well as the framework Automatically adjusts a

composite service plan by removing the non relevant

services or adding the services suggested by the system if

All Rights Reserved @ 2016 IJARMATE

350

their I/O matches semantically.To achieve fine-grained

input/output interface entities within a single web service

are written into separate web services. Since each and

every entities within a single web service is written into

separate web services, scalability of the system also

increases.

When the system receives a request, the Service

Generator computes a graph with all the semantic relations

between the relevant services for the request. A request is

basically a set of input concepts, which represent the

initial set of available inputs, and a set of output concepts,

which are the outputs that the composite service should

return.

 This graph contains all the known services that could

directly or indirectly be invoked given the provided inputs.

Once the graph is generated, the next step is to apply

different optimizations to reduce the graph size in order to

improve the optimal composition search performance

.This part of the composition is independent of the

discovery phase. All the information required to search for

the optimal composition is in the graph, namely, the

relevant services and the semantic relations between their

inputs and outputs, so there is no need to communicate

with the disco0very/matchmaking system

 A formal framework that presents a theoretical

analysis of graph-based service composition in terms of its

dependency with a service discovery and we provide a

fine-grained I/O discovery interface which reduces the

performance overhead without having to assume the local

availability and in-memory preloading of service

registries. The framework also includes an optimal

composition search algorithm to extract the best

composition from the graph minimising the length and the

number of services, and different graph optimisations to

improve the scalability of the system, which as far as we

now are not included in other frameworks.

3.1.2ADVANTAGES

• Semantic Matching functionality,

• Semantic Discovery and composition graph Generation

• Graph-Based Optimizations composition search

performance.

• The proposed graph search-based algorithm can be

applied to the general service composition problems.

• Different from the previous methods, it can generate all

the feasible solutions according to a user’s request.

IV. CONCLUSION

 Semantic Web Service composition approach aims to

enable automatic locations, selection, composition and

monitoring of web services. The Presented Graph Based

Technique focused on the Semantic Input-Output

Parameter Matching of Services’ interfaces that efficiently

integrates the automatic service Composition and

Semantic Service Discovery. Here Composition taking

Place by means with Fine-grained Input-Output Service

Discovery that enables the generation of a Graph Based

Composition Which Contains the Set of Services that are

Semantically Relevant for an Input-Output Request and

Provides Good Performance, and also minimizes over-

head between discovery and composition phases.

V.REFERENCES

[1]M. Carman, L. Serafini, and P. Traverso, (2003) ‘Web

Service Composition as Planning,’ in ICAPS 2003

Workshop on planning for web services, pp. 1636–1642.

[2]P.Hennig and W.T. Balke, (2010) ‘Highly Scalable Web

Service Composition Using Binary Tree-Based

Parallelization,’ IEEE Int. Conf. on Web Services, pp.

123–130.

[3]O.Hatzi, D. Vrakas, M. Nikolaidou,(2011) ‘An Integrated

Approach to Automatic Semantic Web Service

Composition through Planning’, Transactions on Service

Computing,pp1-14

[4]M.Klusch, A. Gerber, and M. Schmidt,(2005) ‘Semantic

Web Service Composition Planning with OWLS-Xplan,’ in

Proceedings of the AAAI Fall Symposium on Semantic

Web and Agents.

[5]S. Oh, D. Lee, and S. Kumara, (2007) ‘Web service planner

(WSPR): an effective and scalable web service

composition algorithm,’ Int. Journal of Web Services

Research,vol. 4, no. 1, pp. 1–22.

[6]J. Rao and X. Su,(2004) ‘A Survey of Automated Web

Service Composition Methods,’in Semantic Web Services

and Web Process Composition’, vol.3387, pp. 43 54.

[7]B. Srivastava and J. Koehler, (2003) ‘Web Service

Composition – Current Solutions and Open Problems,’ in

ICAPS workshop on Planning for Web Services, pp. 28-

35.

[8]Y. Yan, B.Xu, and Z.Gu,(2008) ‘Automatic Service

Composition Using AND/OR Graph ,’in 10th Conference

of E-Commerce Technology,pp.335-338.

All Rights Reserved @ 2016 IJARMATE

351

