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Abstract— Computer-aided diagnosis of masses in mammograms is important to the prevention of breast cancer. 

Many approaches tackle the problem of diagnosis through content-based image retrieval techniques. However, most 

of the techniques fall short of scalability in the retrieval stage, and restricted diagnostic accuracy. Scalable method 

for retrieval and diagnosis of mammographic masses overcome this restriction. Specifically, for a query 

mammographic region of interest (ROI), scale-invariant feature transform (SIFT) features are extracted and searched 

in a vocabulary tree, which stores all the quantized features of previously diagnosed mammographic ROIs. In 

addition, to fully exert the discriminative power of SIFT features, contextual information in the vocabulary tree is 

employed to refine the weights of tree nodes. The retrieved ROIs are then used to determine whether the query ROI 

contains a mass. The presented method has excellent scalability due to the low spatial-temporal cost of vocabulary 

tree. Extensive experiments are conducted on a large dataset of 11 553 ROIs extracted from the digital database for 

screening mammography. 

Index Terms- Computer-aided diagnosis (CAD), Content based image retrieval (CBIR), breast cancer 

 

I. INTRODUCTION 

Breast cancer death rates are higher than that of any other 

cancers for women in the U.S. Approximately 39 520 

women in the U.S. died from breast cancer in 2011, 

although death rates have been decreasing. These decreases 

are likely the result of treatment advances, increased 

awareness, and early detection. Screening mammography is 

one of the most effective techniques for the early detection 

of breast cancer. A radiologist typically examines a 

mammogram to check for signs of cancer. Computer-aided 

detection (CADe) system prompts the radiologist to 

reexamine the films. When using a CADe system with 

mammography, a radiologist still reads the mammogram, 

but a computer program also evaluates the mammogram and 

highlights suspicious regions for the radiologist to review. 

Finally, the radiologist identifies true areas of concern 

before making a final diagnosis. The CADe system in 

screening mammography serves as a second opinion that 

calls attention to abnormalities and avoiding unnecessary 

biopsies. When two radiologists make different diagnoses of 

a mammogram, the CADe system can provide an objective 

machine opinion for them to reconsider. Therefore, CADe 

systems have been developed to assist radiologists and 

increase the accuracy of diagnosis. 

     As an alternative solution, some CAD methods utilize 

content-based image retrieval techniques specifically; they 

compare the current case with previously diagnosed cases 

stored in a reference database, and return the most relevant 

cases along with the likelihood of a mass in the current case. 

Compared with classification-based approaches, these 

methods could provide more clinical evidence to assist the 

diagnosis, and therefore attract more and more attention. For 

example, template matching based on mutual information 

was utilized to retrieve mammographic regions of interest 

(ROIs), and similarity scores between the query ROI and its 

best matches were used to determine whether it contained a 

mass. This approach was further studied using more 

similarity measures (such as normalized mutual 

information). Features related to shape, edge sharpness and 

texture were adopted to search for mammographic ROIs 

with similar masses. For the same purpose, 14 image 

features and a k- nearest neighbor (k-NN) algorithm were 

applied in. This method was improved by removing poorly 

effective ROIs from the reference database. These methods 

have shown great value of CBIR techniques in retrieval and 

analysis of mammographic masses. However, they did not 

consider scalability and were tested on at most 3200 

mammographic ROIs. This drawback limited the diagnostic 

accuracy, since the larger a reference database is, the more 

likely those relevant cases are found and a correct decision 

is made.  

     In this paper, we propose to solve the above problem 

through a comprehensive and scalable image retrieval 

framework, which is illustrated in Fig. 1. Specifically, scale-

invariant feature transform (SIFT) features extracted from 

database ROIs are quantized and indexed in a vocabulary 

tree. To enhance the discriminative power of SIFT features, 
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statistical information about neighbour nodes in the tree is 

utilized to refine the weights of tree nodes following . 

a query ROI, SIFT features are extracted and searched in the 

tree to find similar database ROIs. These ROIs along with 

the similarities to the query ROI are used to determine 

whether the query contains a mass or not. 

      The major contribution of this study is threefold. 1) We 

introduce the vocabulary tree framework to retrieval of 

mammographic masses, which is among the first few 

attempts to tackle the large-scale medical image analysis 

problem. 2) A general vocabulary tree refinement

for the specific mammographic mass retrieval task, which 

improves the retrieval precision and diagnostic accuracy. 3) 

We build a dataset with 11 553 mammographic ROIs, which 

is the largest dataset. 

 

 

Fig .1. Proposed approach 

 

II. PROPOSED APPROACH 

A. SIFT Feature Extraction  

       Our approach builds upon a popular CBIR framework 

that indexes local image features using vocabulary tree 

inverted files. The local feature we choose here is SIFT

Briefly speaking, SIFT features are extracted in four steps.

First, scale-invariant keypoints are detected by finding local 

extrema in the DoG space. Second, the accurate location 

and scale of each keypoint are determined using model 

fitting, and those keypoints with low contrast or poorly 

localized on an edge are eliminated. Third, for each 

remaining keypoint, a gradient orientation histogram of its 

surrounding region at the selected scale is calculated, and 

the histogram peak is chosen as the keypoint’s

orientation. Finally, the surrounding region is divided

4× 4 subregions, an 8-bin histogram of gradient orientations

relative to the dominant orientation is computed for each

subregion, and all the 16 histograms are concatenated to 

form a 128-D feature vector. The aforementioned procedure 

is designed so that the extracted SIFT features are invariant 

to translation, rotation, scale, a substantial range of affine 

distortion, viewpoint/ illumination change, and noise 

addition. SIFT is also very discriminative, i.e., a single 
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so that the extracted SIFT features are invariant 

rotation, scale, a substantial range of affine 

illumination change, and noise 

discriminative, i.e., a single 

feature can be correctly matched from a large database of 

features. The outstanding robustness

power catapult SIFT and its variations to the

feature performance rankings.  

B. Mammogram Retrieval with a Vocabulary Tree

      In image retrieval, a straightforward way to match SIFT 

features would be exhaustive search. Specifically, a query 

SIFT feature is matched with all the database features, and 

the database feature with minimum Euclidean 

identified as the best match. To prune false matches, the 

second closest database feature is also found, and the ratio 

of the second-shortest distance to sh

to as “uniqueness,” can be calculated. Correct matches are 

expected to have higher uniqueness.

search of SIFT feature is extremely time

therefore it cannot be conducted in large

     To overcome this problem, we adopt vocabulary tree and

Inverted files to quantize and index SIFT features. In this 

framework, a large set of SIFT features extracted from a 

separate database are used to train a vocabulary tree through 

hierarchical k-means clustering. The 

Fig. 2. Specifically, k-means algorithm is 

entire training data, defining k clusters and their centers. It is 

then recursively applied to all the clusters, splitting each 

cluster into k subclusters. After L 

tree of depth L and branch factor k 

corresponds to a cluster center, and is commonly referred to 

as “visual word.”  

    

                      
 

Fig. 2. k-means clustering 

      

     Then, all SIFT features extracted from database ROIs are

quantized and indexed using this 

inverted files. As shown in Fig. 

propagated down the tree by choosing the closest node at 

each level. Thus, a 128-D SIFT feature is quantized to a 1

leaf node ID, which represents a path from tree root to leaf. 

The ID of associated database ROI is then added to the 

inverted file attached to the leaf node.

    Note that an inner tree node also has a virtual inverted 

file, which is actually a concatenation of all the inverted 

files attached to its descendant leaf nod

file, which lists all the visual words extracted from a ROI, 

an inverted file records the database ROIs that contain a 

certain visual word. (The name of inverted files comes from 

the fact that they are opposite to 

files significantly outperform forward

retrieval speed. Given a query image represented

visual words, querying the forward files

sequential iteration through each file and to every
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Then, all SIFT features extracted from database ROIs are 

quantized and indexed using this vocabulary tree and 

files. As shown in Fig. 3., each feature is 

tree by choosing the closest node at 

SIFT feature is quantized to a 1-D 

a path from tree root to leaf. 

ROI is then added to the 

inverted file attached to the leaf node.  

Note that an inner tree node also has a virtual inverted 

is actually a concatenation of all the inverted 

its descendant leaf nodes. Unlike a forward 

the visual words extracted from a ROI, 

the database ROIs that contain a 

of inverted files comes from 

 forward files.) Inverted 

files significantly outperform forward files with regard to 

retrieval speed. Given a query image represented as a bag of 

visual words, querying the forward files would require 

sequential iteration through each file and to every database 
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feature, therefore, it is technically unrealistic for largescale

real applications. On the contrary, searching inverted files

only needs to consider those files corresponding to the 

query visual words, which account for a small portion of all 

the inverted files. Such advantage is dramatically enhanced 

with the aid of vocabulary tree, which contains millions of 

leaf nodes attached with inverted files. 

Fig. 3. Quantization and indexing of a database SIFT feature 

using Vocabulary tree and inverted files 

C. Query Image Processing 
     At last, given a query ROI q, SIFT features are extracted 

and quantized in the aforementioned manner. The similarity 

score between q and a database ROI d is calculated based on 

how similar their paths are. Normally, the tree nodes are 

weighted using term frequency-inverse document frequency 

(TF-IDF) scheme or its variations. TF-IDF

adopted in vocabulary tree-based CBIR methods. It reflects 

the importance of a visual word to an image in a collection 

of images. In brief, TF means the weight of a node is 

proportional to its frequency in a query ROI, and IDF 

indicates that the weight is offset by its frequency in all 

database ROIs. 

      Formally, q is represented by a set of paths q= 

where m is the number of features. Each path consists of

nodes Pq
i = {vq

i,l}
L

l=1,where vq
i,l denotes the node on the lth 

level. Similarly, d is represented by d = {P
d

j}
n

j =1

the number of features, and P
d

j ={v
d

j,l}
L

l =1, where v

denotes the node on the lth level. The similarity score 

between q and d is calculated as the average similarity 

between all pairs of paths 

( ) ( )
,

1
, ,                                     (1

.

q d

P i j

i j

s q d s P P
m n

= ∑

where the normalization factor 1/ (m · n) is used to achieve 

fairness between database ROIs with few and many 

features. The similarity between two paths is defined as the 

weighted count of their common nodes 
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Where w is a weighting function, and 

delta function, i.e., δ (a, b) = 1 if 

otherwise. In, w is defined following the IDF principle as 

follows:  

( ) ( ) lo g                                      
v

N
w v i d f v

N
= =

 

where N is the total number of database ROIs and 

number of ROIs with at least one path through node 

that multiple features in q quantized to the same node 

contribute w (v) multiple times to 

equivalent to TF. The aforementioned framework allows the 

use of a very large vocabulary, since its computational cost 

is logarithmic in the number of visual words. As the 

vocabulary size increases, leaf nodes become smaller and 

more discriminative. Therefore, the retrieval precision is 

improved. In addition, smaller nodes mean that less features 

from the database need to be considered during similarity 

calculation. Thus, the retrieval speed is 

D. Adaptive Weighting of Vocabulary Tree Nodes
     The IDF scheme calculates a node’s weight based on the 

whole database, ignoring how frequently it occurs in a 

specific mammogram. However, generally speaking, 

features with high frequencies in a mammogram are less 

informative than those with low frequencies. 

     Although their IDFs are generally smaller than those of 

the features extracted from the edge of the mass, they still 

dominate the similarity score due to large TFs. To avoid 

such over counting, inspired by descriptor contextual 

weighting, we incorporate the mammogram

frequencies into IDF scheme to down

Suppose the node paths P
q

iof query ROI 

database ROI d have the same node 

∩{v
d

j,l}
L

l=1, the node’s weight w (v) in (3) is modified to

( ) ( ),

,
. . i d f    ( 4 )     

q d q d

i ji j p p
v vw w wP P=

    
   

where the adaptive weight factors 

calculated based on the frequencies of nodes along paths 

P
q

iand Pd
j, respectively. Specifically, let 

of v
q

i,lin q, i.e., the number of paths of 

node v
q

i,l, wP(P
q

i) is defined as
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v v
=

∑

∑

 

where w(v
q

i,l) is a weighting coefficient, usually set to 

idf(vq
i,l)empirically. wP(Pd

j) is defined in the same way. The 
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improved. In addition, smaller nodes mean that less features 
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n a mammogram are less 

informative than those with low frequencies.  

Although their IDFs are generally smaller than those of 

the features extracted from the edge of the mass, they still 

dominate the similarity score due to large TFs. To avoid 

r counting, inspired by descriptor contextual 

weighting, we incorporate the mammogram-specific node 

frequencies into IDF scheme to down-weight these features. 

of query ROI q and P
d

jof 

have the same node v∈ P
q

i∩ P
d

j= {v
q

i,l}
L

l=1 

) in (3) is modified to 

( ) ( ). . i d f    ( 4 )     
q d

i j
v vP P

where the adaptive weight factors wP(P
q

i) and wP(P
d

j ) are 

calculated based on the frequencies of nodes along paths 

, respectively. Specifically, let tf (vq
i,l, q) be the TF 
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square root in the aforementioned definition is due to the 

weighting ofboth wP(P
q

i) and wP(P
d

j).Note that 

shared for all nodes v
q

i,lalong path P
q

i. In order to determine 

the importance of a feature P
q

i,  wP(P
q

i) takes into account 

the features in q quantized to neighbor tree leaves since they 

also contribute to tf (vq
i,l, q). Consequently, 

subtree with more features are heavily downweighted

 

III. SYSTEM MODEL 

A. Diagnosis of mammographic masses 

     We consider a computer-aided breast cancer diagnosis 

system (CABCDS) as shown in Fig. 4. The system contains

two modules: context extraction and computer

diagnosis.  

     We consider a sequence of patients numbered 

Arrive with a borderline test result. Context

module aggregates information xt from the EHR about a 

patient t, having a distribution of f(xt). Then, the 

aided diagnosis module generates a diagnostic 

recommendation Rt ∈ {0,1} to the physician, where 0 

represents a 6-month imaging follow-up and 1 represents a 

biopsy. Here, we consider a binary decision, but the 

approach can easily be extended to incorporate additional 

choices. 

Fig .4. Computer-aided breast cancer diagnosis system model

B. Context Extraction Module 

       To better assist physicians, the CABCDS system 

considers a diverse set of contextual information to make 

sufficiently accurate recommendations. As shown

I, the following types of contextual features are 

patient demographics (e.g., age, race), breast density, 

assessment history, whether the opposite breast has 

BI-RADS score previously (e.g., achieve BI-RADS 3), and 

imaging modality (e.g., mammogram, ultrasound).

 
 

TABLE I 
TYPES OF CONTEXTS AND DESCRIPTIONS 

  

Context Description 

Demographics The characteristics of a patient, age, race, disease

history, family medical history, etc.  
  

 Group 1: The breast is almost entirely fat (fibrous
 and glandular tissue <25%). 
 Group 2: There are scattered fibroglandular

 densities (fibrous and glandular tissue 25% to

Breast Density 50%). 
 Group 3: The breast tissue is heterogeneously

 dense (fibrous and glandular tissue 50% to 75%).

 Group 4: The breast tissue is extremely dense
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densities (fibrous and glandular tissue 25% to 
 

 

: The breast tissue is heterogeneously 
 

glandular tissue 50% to 75%). 
 

: The breast tissue is extremely dense 
 

 (fibrous and glandular tissue > 75%).

 The information contained in previous imaging
Historical exam assessments (e.g., whether findings in BI

Assessments RADS 3 or higher appear in the past, or whether

 there is a significant change in the past year).

Characteristic The information of the opposite breast (e.g.,
of the opposite whether findings in BI

Breast for the opposite breast).

 The modality used for imaging: mammography
Modality (MG),  ultrasound  (US),  magnetic  resonance

 imaging (MRI) or computer radiography (CR).

 

C. Computer-aided Diagnosis Module

      This module consists of recommendation generation and

diagnostic evaluation steps. The recommendation generation

step suggests a diagnostic strategy based on the contextual

information and previous diagnostic evaluations. A 

diagnostic strategy is the approach for selecting an action, 

either to undergo a biopsy or to fol

observed contextual information. Given the context x

patient t, πt(xt) represents the action selected by the 

diagnostic strategy πt. The strategy set is denoted by 

     The diagnostic evaluation module collects outcomes of

patients. The outcome of the patient t is s

either 0 (representing benign) or 1 (representing malignant). 

If a patient undergoes a biopsy or returns for a short

followup, the patient’s outcome is revealed, where if the 

patient has been followed up for a certain time and the 

condition is stable, then the outcom

We use σ(x) to represent the probability of being malignant 

for a patient with context x. The evaluation of the diagnostic 

recommendation is through diagnost

diagnostic errors are considered: false positive (e.g., if the 

outcome st(xt) is benign, and the recommended action is to 

undergo a biopsy) and false negative (e.g., if the outcome 

st(xt) is malignant, and the recommended action is 

term follow-up). 

 
D. Diagnostic Recommendation Problem
     Based on the given CABCDS system, our design goal is

to propose a recommendation algorithm that minimizes the

false positive rate (FPR) given a tolerable false negative rate

(FNR) η (e.g., < 2%). The trade-off between false positive

and false negative rates can be specified by a physician or

by an institution. Therefore, the diagnostic recommendation

problem is formally written as:  

      minimize FPR  

      subject to FNR ≤  η                                                     

 

 

IV. EXPERIMENTS

     Our experimental dataset is constructed from the digital

database for screening mammography (DDSM)

currently the largest public mammogram database.

comprised of 2 604 cases, and every case consists of four

views, with two views, CC and MLO, for each breast. The

masses have diverse shapes, sizes, margins, breast densities 

as well as patients’ races and ages, and are associated with 

annotations labeled by experienced radiologists. 

identified dataset of 4,640 individuals who underwent
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screening and diagnostic mammograms at a large academic

medical center is used. Patient outcome is derived

biopsy result, which is typically obtained for individuals 

with a BIRADS score of 4 or 5. Our focus is on analyzing 

cases that are BI-RADS 4A; this category represents 

patients whose test results are less suspicious for cancer, 

raising the concern about unnecessary biopsies. We consider 

five contextual features, including:(1) patient age, (2) breast 

density, (3) assessment history (whether or not the 

immediately preceding exam shows a finding of BI

or above), (4) assessment results for the oppo

(whether or not the immediately preceding exam shows a 

finding of BI-RADS 3 or above), and (5) the

modality used.  

     

 

   

 

 

 

 

 

 

 

 
 

Fig. 7. Two query ROIs (left) and their top K =10 retrieved database ROIs 

calculated by VocTree+AdaptWeight (right). For each ROI, its class is 
shown below. Both query ROIs are correctly classified according to a 

weighted majority vote of their retrieval sets. 

First of all, retrieval precision is evaluated, which is defined

as the percentage of retrieved database ROIs that are 

relevant to query ROI. Overall the precision 

slightly as the size of retrieval set K increases from 1 to 20. 

The precisions at top K = 1, 5, and 20 retrievals 

summarized in Table II. Two retrieval sets returned by 

VocTree+AdaptWeight are provided  in Fig. 5 for visual  

evaluation. The results show that our methods,

VocTree+AdaptWeight, surpass the compared 

Detailed results show that many incorrect retrievals

to the visual similarity between malignant masses and

normal ROIs with bright cores and spiculated 

also notable that retrieval precisions for normal regions are 

generally higher than those for masses. A possible reason is 

that the database has more normal ROIs than masses, 

therefore it is easier for a normal query ROI to find similar 

database ROIs. 
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10 retrieved database ROIs 

calculated by VocTree+AdaptWeight (right). For each ROI, its class is 
are correctly classified according to a 

is evaluated, which is defined 

as the percentage of retrieved database ROIs that are 

to query ROI. Overall the precision changes 

increases from 1 to 20. 

= 1, 5, and 20 retrievals are 

retrieval sets returned by 

in Fig. 5 for visual  

results show that our methods, especially 

 approaches. 

Detailed results show that many incorrect retrievals are due 

to the visual similarity between malignant masses and 

res and spiculated edges. It is 

notable that retrieval precisions for normal regions are 

higher than those for masses. A possible reason is 

database has more normal ROIs than masses, 

easier for a normal query ROI to find similar 

     Second, classification accuracy 

refers to the percentage of query ROIs that are correctly 

classified. The classification accuracies at top 

20 retrievals are reported in Table III. Once again, our 

methods consistently outperform the other t

In addition, the classification accuracy is even better than 

the retrieval precision, since irrelevant

cause a misclassification as long as they remain a minority 

of the retrieval set. Especially, Voc

achieves a classification accuracy as high as

which is pretty satisfactory. 
 
                                       TABLE III 

CLASSIFICATION ACCURACY AT DIFFERENT

 
K Method Mass Normal
    

 NMI 73.5% 75.2%

1 BoW 76.8% 78.9%

 VocTree 82.5% 85.8%

 VocTree+AdaptWeight 86.9% 89.3%

 NMI 73.3% 76.1%

5 BoW 78.7% 80.3%

 VocTree 84.9% 86.7%

 VocTree+AdaptWeight   90.1%         91

 NMI 71.2% 74.6%

20 BoW 77.0% 76.2%

 VocTree 81.9% 84.1%

 VocTree+AdaptWeight 86.1% 87.7%
    

 

 

     IV.CONCLUSION

      The scalable CBIR is used for the automatic diagnosis 

of mammographic masses. To retrieve efficiently from a 

large database, which leads to better retrieval precision and 

diagnostic accuracy, vocabulary tree framework is 

employed to hierarchically quantize and index SIFT 

features. Furthermore, contextual information in the 

vocabulary tree is incorporated into TF

scheme to improve the discriminative power of tree nodes. 

A query mammographic ROI is classified using a weighted 

majority vote of its best matched database ROIs. Extensive 

experiments are conducted on a dataset including 2 340 

mass ROIs and 9 213 CAD generated false positive ROIs, 

which is the largest dataset to the best of our knowledge. 
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classification accuracy is measured, which 

f query ROIs that are correctly 

classification accuracies at top K = 1, 5, and 

ed in Table III. Once again, our 

the other two approaches. 

accuracy is even better than 

the retrieval precision, since irrelevant retrievals would not 

as they remain a minority 

Especially, Voc-Tree+AdaptWeight 

achieves a classification accuracy as high as 90.8% at K = 5, 

IFFERENT K 

Normal Total 
 

75.2% 74.4% 
78.9% 77.9% 
85.8% 84.2% 
89.3% 88.1% 
76.1% 74.7% 
80.3% 79.5% 
86.7% 85.8% 
91.5%        90.8% 
74.6% 72.9% 
76.2% 76.6% 
84.1% 83.0% 
87.7% 86.9% 

 

.CONCLUSION 

The scalable CBIR is used for the automatic diagnosis 

of mammographic masses. To retrieve efficiently from a 

database, which leads to better retrieval precision and 

diagnostic accuracy, vocabulary tree framework is 

employed to hierarchically quantize and index SIFT 

features. Furthermore, contextual information in the 

vocabulary tree is incorporated into TF-IDF weighting 

scheme to improve the discriminative power of tree nodes. 

A query mammographic ROI is classified using a weighted 

majority vote of its best matched database ROIs. Extensive 

experiments are conducted on a dataset including 2 340 

CAD generated false positive ROIs, 

which is the largest dataset to the best of our knowledge. 
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Excellent results demonstrate our method’s retrieval 

precision, classification accuracy, efficiency, and scalability. 

 

REFERENCES 

[1] Chandra PrasetyoUtomo , AanKardiana , Rika 

Yuliwulandari “Breast Cancer Diagnosis using 

Artificial Neural Networks with Extreme Learning 

Techniques”,  (IJARAI) International Journal of 

Advanced Research in Artificial Intelligence, Vol. 3, 

No. 7, 2014 

[2] K. Ganesan, U. R. Acharya, C. K. Chua, L. C. Min, 

K. T. Abraham, and K.-H. Ng, “Computer-aided 

breast cancer detection using mammograms: A 

review,” IEEE Rev. Biomed. Eng., vol. 6, pp. 77–98, 

Mar. 2013. 

[3] J. Liu, S. Zhang, W. Liu, X. Zhang, and D. N. 

Metaxas, “Scalable mammogram retrieval using 

anchor graph hashing,” in Proc. IEEE Int. Symp. 

Biomed. Imaging, 2014, pp. 898–901. 

[4] S.-C. Tai, Z.-S. Chen, and W.-T. Tsai, “An 

automatic mass detection system in mammograms 

based on complex texture features,” IEEE J. 

Biomed. Health Informat., vol. 18, no. 2, pp. 618–

627, Mar. 2014. 

[5] Xiaoming Liu,  Jinshan Tang, “Mass Classification 

in Mammograms Using Selected Geometry and 

Texture Features, and a New SVM-Based Feature 

Selection Method,” IEEE Trans. Med. Imag., vol. 

31, no. 6, pp. 1276–1288, 

Jun. 2014. 

[6] A. Oliver, J. Freixenet, J. Mart´ı, E. P´erez, J. Pont, 

E. R. E. Denton, and R. Zwiggelaar, “A review of 

automatic mass detection and segmentation in 

mammographic images,” Med. Image Anal., vol. 14, 

no. 2, pp. 87–110, 2010. 

[7] Y.-H. Chang, L. A. Hardesty, C. M. Hakim, T. S. 

Chang, B. Zheng, W. F. Good, et al., “Knowledge-

based computer-aided detection of masses on 

digitized mammograms: A preliminary assessment,” 

Medical physics, vol. 28, no. 4, pp. 455-461, 2001. 

 

 


