

162

All Rights Reserved @ 2016 IJARMATE

To Avoid Deduplication Using Content Similarity And

Checksum Algorithm With Job Scheduling Method

N.R.Bhuvaneswari Mrs.B.Muthulakshmi

Department of Computer Science and Engineering Department of Computer Science and Engineering

A.V.C College of Engineering A.V.C College of Engineering

 Abstract - Experimentally, magnetic tape items has been used

for database backup. With the explosion in disk capacity, it is

now impossible to use disk for data backup. Cloud storage is used

for the database backup. Data deduplication is a specialized data

compression technique for eliminating duplicate copies of

repeating data. To identify similar segments, use content

similarity and a sparse index. Choose a small portion of the

chunks in the stream as samples. Storage-based data

deduplication reduces the amount of storage needed for a given

set of files. It is most effective in applications where many copies

of very similar or even identical data are stored on a single disk.

Virtual cloud servers benefit from deduplication because it allows

nominally separate system files for the cloud to be concluded in a

single storage space. The proposed method can be allocating the

resource can be based on the dependencies and the particular job

execution and its weight of the each job and content similarity

avoid the de-duplications

 Index Terms - Cloud storage, on-demand access, collective

I/O, De-duplication.

I. INTRODUCTION

One of the main features that has contributed to the

growing popularity of Infrastructure-as-a-Service (IaaS) cloud

computing is the elastic on-demand provisioning of resources:

users can bring up a whole virtual cluster and reconfigure it

dynamically with a simple click of a button. However, as the

user interface grows simpler and the types of workloads

diversify,achieving efficient on-demand VM provisioning is a

non-trivial task.

A particularly difficult challenge in this context is the

collective on-demand read pattern, i.e., provisioning a large

number of inter-dependent VMs (e.g. part of the same virtual

cluster running a large scale distributed application) that

concurrently read (typically) a part of the content from the

same VM (virtual machine) disk image (e.g., boot and launch

applications) or from a large dataset (e.g., shared input data).

This pattern is often encountered in the context of largescale

HPC (high performance computing) and data-intensive

applications. Obviously, there is a need to minimize the

provisioning time and guarantee scalability despite a growing

number of VMs, otherwise users do not perceive IaaS as truly

on-demand and lose interest, while at the same time cloud

providers lose potential profit by not efficiently leveraging

their computational resources.

Despite widespread need for scalable, high-performance

solutions that handle the collective on-demand read pattern,

IaaS cloud providers offer limited support in this regard. Most

often, in an attempt to avoid any bottlenecks due to I/O

contention to the storage service where the VM images and

datasets are stored, it is very common to broadcast the full

content to the local storage of the VM instances before

allowing any read.

However, most of the time, this approach is sub-optimal

because of two reasons: (1) not all content is actually read; and

(2) reads need to wait for the whole broadcast to finish. Thus,

approaches that deliver content onthe-fly as needed in order to

eliminate these two disadvantages saw increasing adoption,

despite the added complexity of having to deal with the I/O

contention to the storage service. One major direction that

addresses the problem of I/O contention for on-the-fly data

delivery during collective reads is the use of peer-to-peer

collaborative techniques. In this class of solutions, the VM

instances are aware of each other’s previously accessed data

that is locally available and prefer to exchange the needed data

among themselves rather than interact with the decoupled

storage service, which risks the creation of bottlenecks due to

I/O contention. Although related to pre-broadcast techniques

(which are typically implemented as BitTorrent-like

protocols), the focus in this context falls on how to detect and

anticipate what content is actually needed during the runtime

of a VM instance, in order to be able to pre-fetch it from the

other VM instances as early as possible.
However, despite the success of such techniques to

improve the performance and scalability of collective reads,

most of the time they require foreknowledge about what VM

instances are related and what dataset or VM image they share

and read in a concurrent fashion. This is a significant

limitation for large IaaS cloud datacenters where a large

number of users share the infrastructure simultaneously,

because there are multiple opportunities for VM instances to

collaborate and exchange identical pieces of data even if they

belong to different users for which the relationship between

the VM instances, their access pattern and the data they are

reading is unknown. This aspect is particularly important in

light of several studies that confirm a large amount of

163

All Rights Reserved @ 2016 IJARMATE

redundancy among VM images, with the data duplication

degree reported up to 94%

II. RELATED WORK

Content similarity detection is typically performed by means of

deduplication, which is broadly classified into static and

content-defined. Static approaches split the input data into

equally sized chunks, which are then compared among each

other (either byte-by-byte or, for increased performance, based

on their hash values) in order to identify and eliminate

duplicates. While simple and fast, static approaches suffer

from misalignment issues (i.e insertions or deletions lead to the

impossibility to detect duplicates). To deal with such

misalignment issues, content defined approaches were

proposed. Essentially, they involve a sliding window over the

data and that hashes the window content at each step using

Rabin’s fingerprinting methodMany storage systems have

adopted and refined deduplication techniquesTechniques to

fetch data from storage services to VM instances are broadly

classified into pre-broadcast and on- demand. Pre-broadcast

techniques use various scalable mechanisms (e.g., multi-cast

application level broadcast- trees to peer-to-peer protocols to

deliver a shared dataset from the storage service to multiple

VM instances in advance, such that it can be used later without

worrying about bottlenecks due to I/O bandwidth contention.

However, on the downside, the broadcast can take a long

time to finish and potentially delivers more content than is

actually needed during runtime. On-demand techniques on the

other hand eliminate both disadvantages at the cost of dealing

with the I/O bandwidth contention during runtime. This

approach is widely used in IaaS datacenters for virtual disk

images using copy-on-write: a locally stored QCOW2image is

instantiated from a shared backing image that is located

remotely on the image store (e.g. NFS server). In an attempt to

alleviate the I/O contention, various solutions ranging from

decentralizing the storage (e.g. by using parallel file system to

using dedicated repositories and specialized prefetching

technique have been proposed. In a broader sense,

collaborative caching has been explored in the MPI-IO

context. Our own previous work explores how to improve

collective reads to a shared virtual disk image by means of

pushing accessed chunks among the members of the group, in

an attempt to anticipate and avoid direct access to the storage

service. This paper focuses on exploiting content similarity on-

the- fly in order to enable multiple VM instances, even if they

be- long to different dissemination groups, to collaborate,

identify and exchange identical chunks of data in order to

minimize the I/O pressure on the storage service under

concurrency. To our best knowledge, we are the first to focus

on this aspect in particular.

III. EXISTING SYSTEM

In Existing method the major direction that

addresses the problem of I/O contention for on-the-fly

data delivery during collective reads is the use of

peer-to-peer collaborative techniques. In this class of

solutions, the VM instances are aware of each other’s

previously accessed data that is locally available and

prefer to exchange the needed data among themselves

rather than interact with the decoupled storage

service, which risks the creation of bottlenecks due to

I/O contention. The data transformation is done by

deduplication to avoid the traffic and to improve I/O

request performance the content similarity technique

is used.

 Disadvantages:

� Content Similarity is Used

� Reduces Amount of Data Transfer and No of Transfer

� Lack of Resource Scheduling

� Workload Balance is not Maintained

� Lack of User Interface

IV. SYSTEM ARCHITECTURE

A particularly difficult challenge in this context is

the collective on-demand read pattern, i.e.,

 Indexing

Unstructured format

into structured format

 Cloud registration

and accessing

Finding content

similarity and

avoiding

 Checksum

method

 Content similarity

algorithm

 Job allocation based

on workloads

 Client

164

All Rights Reserved @ 2016 IJARMATE

provisioning a large number of inter-dependent

VMs (e.g. part of the same virtual cluster running a

large

spelling and grammar. Use high resolution (300dpi or above)

figures, plots, drawings and photos for best printing result.

TABLE I

TYPE SIZE FOR PAPERS

Type

size

(pts.)

Appearance

Regular Bold Italic

6 Table superscripts

8

Section titlesa, references, tables,

table namesa, table captions,

figure captions, footnotes, text

subscripts, and superscripts

9 Abstract, Index Terms

10

Authors' affiliations, main text,

equations, first letter in section

titlesa
 Subheading

11 Authors' names

22 Paper title

 aUppercase

B. Preparing Your PDF Paper for IEEE Xplore©

 Detailed instructions on how to prepare PDF files of your

papers for IEEE Xplore© can be found at

http://www.ieee.org/pubs/confpubcenter

PDF job setting files for Acrobat versions 4, 5 and 6 can be

found for downloading from the above webpage as well. The

instructions for preparing PDF papers for IEEE Xplore© must

be strictly followed.

II. HELPFUL HINTS

A. Figures and Tables

 Try to position figures and tables at the tops and bottoms

of columns and avoid placing them in the middle of columns.

Large figures and tables may span across both columns. Figure

captions should be centered below the figures; table captions

should be centered above. Avoid placing figures and tables

before their first mention in the text. Use the abbreviation

“Fig. #,” even at the beginning of a sentence.

 Figure axis labels are often a source of confusion. Use

words rather than symbols. For example, as shown in Fig. 1,

write “Magnetization,” or “Magnetization (M)” not just “M.”

Put units in parentheses. Do not label axes only with units. In

the example, write “Magnetization (A/m)” or “Magnetization

(A�m
-1

).” Do not label axes with a ratio of quantities and units.

For example, write “Temperature (K),” not “Temperature/K.”

 Multipliers can be very confusing. Write “Magnetization

(kA/m)” or “Magnetization (10
3
 A/m).” Figure labels should

be legible, at 8-point type.

0

5

10

15

0 2 4 6

Applied Field (103 A/m)

Fig. 1 Magnetization as a function of applied field.

Note how the caption is centered in the column.

B. References

 Number citations consecutively in square brackets [1].

Punctuation follows the bracket [2]. Refer simply to the

reference number, as in [3]. Use “Ref. [3]” or “Reference [3]”

at the beginning of a sentence: “Reference [3] was the first …”

 Number footnotes separately in superscripts. Place the

actual footnote at the bottom of the column in which it was

cited. Do not put footnotes in the reference list. Use letters for

table footnotes (see Table I). IEEE Transactions no longer use

a journal prefix before the volume number. For example, use

“IEEE Trans. Magn., vol. 25,” not “vol. MAG-25.”

 Give all authors’ names; use “et al.” if there are six

authors or more [4]. Papers that have not been published, even

if they have been submitted for publication, should be cited as

“unpublished” [4]. Papers that have been accepted for

publication should be cited as “in press” [5]. In a paper title,

capitalize the first word and all other words except for

conjunctions, prepositions less than seven letters, and

prepositional phrases.

 For papers published in translated journals, first give the

English citation, then the original foreign-language one [6].

C. Abbreviations and Acronyms

 Define abbreviations and acronyms the first time they are

used in the text, even if they have been defined in the abstract.

Abbreviations such as IEEE, SI, MKS, CGS, ac, dc, and rms

do not have to be defined. Do not use abbreviations in the title

unless they are unavoidable.

D. Equations

 Number equations consecutively with equation numbers in

parentheses flush with the right margin, as in (1). To make

your equations more compact, you may use the solidus (/) and

the exp function, etc. Italicize Roman symbols for quantities

and variables, but not Greek symbols. Use an en dash (–)

rather than a hyphen for a minus sign. Use parentheses to

avoid ambiguities in denominators. Punctuate equations with

commas or periods when they are part of a sentence, as in

2/)sin(cos2/)exp(
2

sincos

2
xixix

xixeix

+=⇒
+

= . (1)

 Symbols in your equation should be defined before the

equation appears or immediately following. Cite equations

M
ag

n
et

iz
at

io
n

 (
k

A
/m

)

165

All Rights Reserved @ 2016 IJARMATE

using “(1),” not Eq. (1)” or “equation (1),” except at the

beginning of a sentence: “Equation (1) is …”

E. Other Recommendations

 The Roman numerals used to number the section headings

are optional. Do not number ACKNOWLEDGEMENT and

REFERENCES and begin Subheadings with letters. Use two

spaces after periods (full stops). Hyphenate complex

modifiers: “zero-field-cooled magnetization.” Avoid dangling

participles, such as, “Using (1), the potential was calculated.”

Write instead, “The potential was calculated using (1),” or

“Using (1), we calculated the potential.”

 Use a zero before decimal points: “0.25,” not “.25.” Use

“cm
3
,” not “cc.” Do not mix complete spellings and

abbreviations of units: “Wb/m
2
” or “webers per square meter,”

not “webers/m
2
.” Spell units when they appear in text: “…a

few henries,” not “…a few H.” If your native language is not

English, try to get a native English-speaking colleague to

proofread your paper. Do not add page numbers.

III. UNITS

 Use either SI (MKS) or CGS as primary units. (SI units

are encouraged.) English units may be used as secondary units

(in parentheses). An exception would be the use of English

units as identifiers in trade, such as “3.5-inch disk drive.”

 Avoid combining SI and CGS units, such as current in

amperes and magnetic field in oersteds. This often leads to

confusion because equations do not balance dimensionally. If

you must use mixed units, clearly state the units for each

quantity that you use in an equation.

IV. SOME COMMON MISTAKES

 The word “data” is plural, not singular. In American

English, periods and commas are within quotation marks, like

“this period.” A parenthetical statement at the end of a

sentence is punctuated outside of the closing parenthesis (like

this). (A parenthetical sentence is punctuated within the

parentheses.) A graph within a graph is an “inset,” not an

“insert.” The word alternatively is preferred to the word

“alternately” (unless you mean something that alternates). Do

not use the word “essentially” to mean “approximately” or

“effectively.” Be aware of the different meanings of the

homophones “affect” and “effect,” “complement” and

“compliment,” “discreet” and “discrete,” “principal” and

“principle.” Do not confuse “imply” and “infer.” The prefix

“non” is not a word; it should be joined to the word it

modifies, usually without a hyphen. There is no period after

the “et” in the Latin abbreviation “et al.” The abbreviation

“i.e.” means “that is,” and the abbreviation “e.g.” means “for

example.” An excellent style manual for science writers is [7].

ACKNOWLEDGMENT

 The preferred spelling of the word “acknowledgment” in

America is without an “e” after the “g.” Try to avoid the stilted

expression, “One of us (R. B. G.) thanks …” Instead, try

“R.B.G. thanks …” Put sponsor acknowledgments in the

unnumbered footnote on the first page.

REFERENCES

[1] M. King, B. Zhu, and S. Tang, “Optimal path planning,” Mobile Robots,

vol. 8, no. 2, pp. 520-531, March 2001.

[2] H. Simpson, Dumb Robots, 3rd ed., Springfield: UOS Press, 2004, pp.6-9.

[3] M. King and B. Zhu, “Gaming strategies,” in Path Planning to the West,

vol. II, S. Tang and M. King, Eds. Xian: Jiaoda Press, 1998, pp. 158-176.

[4] B. Simpson, et al, “Title of paper goes here if known,” unpublished.

[5] J.-G. Lu, “Title of paper with only the first word capitalized,” J. Name

Stand. Abbrev., in press.

[6] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron spectroscopy

studies on magneto-optical media and plastic substrate interface,” IEEE

Translated J. Magn. Japan, vol. 2, pp. 740-741, August 1987 [Digest 9th

Annual Conf. Magnetics Japan, p. 301, 1982].

[7] M. Young, The Technical Writer’s Handbook, Mill Valley, CA:

University Science, 1989.

