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 Abstract - Experimentally, magnetic tape items has been used 

for database backup. With the explosion in disk capacity, it is 

now impossible to use disk for data backup. Cloud storage is used 

for the database backup. Data deduplication is a specialized data 

compression technique for eliminating duplicate copies of 

repeating data. To identify similar segments, use content 

similarity and a sparse index.  Choose a small portion of the 

chunks in the stream as samples. Storage-based data 

deduplication reduces the amount of storage needed for a given 

set of files. It is most effective in applications where many copies 

of very similar or even identical data are stored on a single disk. 

Virtual cloud servers benefit from deduplication because it allows 

nominally separate system files for the cloud to be concluded in a 

single storage space. The proposed method can be allocating the 

resource can be based on the dependencies and the particular job 

execution and its weight of the each job and content similarity 

avoid the de-duplications 

 
 Index Terms - Cloud storage, on-demand access, collective 

I/O, De-duplication. 

 

I.  INTRODUCTION 

One of the main features that has contributed to the 

growing popularity of Infrastructure-as-a-Service (IaaS) cloud 

computing is the elastic on-demand provisioning of resources: 

users can bring up a whole virtual cluster and reconfigure it 

dynamically with a simple click of a button. However, as the 

user interface grows simpler and the types of workloads 

diversify,achieving efficient on-demand VM provisioning is a 

non-trivial task. 

A particularly difficult challenge in this context is the 

collective on-demand read pattern, i.e., provisioning a large 

number of inter-dependent VMs (e.g. part of the same virtual 

cluster running a large scale distributed application) that 

concurrently read (typically) a part of the content from the 

same VM (virtual machine) disk image (e.g., boot and launch 

applications) or from a large dataset (e.g., shared input data). 

This pattern is often encountered in the context of largescale 

HPC (high performance computing) and data-intensive 

applications. Obviously, there is a need to minimize the 

provisioning time and guarantee scalability despite a growing 

number of VMs, otherwise users do not perceive IaaS as truly 

on-demand and lose interest, while at the same time cloud 

providers lose potential profit by not efficiently leveraging 

their computational resources. 

Despite widespread need for scalable, high-performance 

solutions that handle the collective on-demand read pattern, 

IaaS cloud providers offer limited support in this regard. Most 

often, in an attempt to avoid any bottlenecks due to I/O 

contention to the storage service where the VM images and 

datasets are stored, it is very common to broadcast the full 

content to the local storage of the VM instances before 

allowing any read. 

However, most of the time, this approach is sub-optimal 

because of two reasons: (1) not all content is actually read; and 

(2) reads need to wait for the whole broadcast to finish. Thus, 

approaches that deliver content onthe-fly as needed in order to 

eliminate these two disadvantages saw increasing adoption, 

despite the added complexity of having to deal with the I/O 

contention to the storage service. One major direction that 

addresses the problem of I/O contention for on-the-fly data 

delivery during collective reads is the use of peer-to-peer 

collaborative techniques. In this class of solutions, the VM 

instances are aware of each other’s previously accessed data 

that is locally available and prefer to exchange the needed data 

among themselves rather than interact with the decoupled 

storage service, which risks the creation of bottlenecks due to 

I/O contention. Although related to pre-broadcast techniques 

(which are typically implemented as BitTorrent-like 

protocols), the focus in this context falls on how to detect and 

anticipate what content is actually needed during the runtime 

of a VM instance, in order to be able to pre-fetch it from the 

other VM instances as early as possible. 
However, despite the success of such techniques to 

improve the performance and scalability of collective reads, 

most of the time they require foreknowledge about what VM 

instances are related and what dataset or VM image they share 

and read in a concurrent fashion. This is a significant 

limitation for large IaaS cloud datacenters where a large 

number of users share the infrastructure simultaneously, 

because there are multiple opportunities for VM instances to 

collaborate and exchange identical pieces of data even if they 

belong to different users for which the relationship between 

the VM instances, their access pattern and the data they are 

reading is unknown. This aspect is particularly important in 

light of several studies that confirm a large amount of 
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redundancy among VM images, with the data duplication 

degree reported up to 94% 

 

II. RELATED WORK 

Content similarity detection is typically performed by means of 

deduplication, which is broadly classified into static and 

content-defined. Static approaches split the input data into 

equally sized chunks, which are then compared among each 

other (either byte-by-byte or, for increased performance, based 

on their hash values) in order to identify and eliminate 

duplicates. While simple and fast, static approaches suffer 

from misalignment issues (i.e insertions or deletions lead to the 

impossibility to detect duplicates). To deal with such 

misalignment issues, content defined approaches were 

proposed. Essentially, they involve a sliding window over the 

data and that hashes the window content at each step using 

Rabin’s fingerprinting methodMany storage systems have 

adopted and refined deduplication techniquesTechniques to 

fetch data from storage services to VM instances are broadly 

classified into pre-broadcast and on- demand. Pre-broadcast 

techniques use various scalable mechanisms (e.g., multi-cast 

application level broadcast- trees to peer-to-peer protocols to 

deliver a shared dataset from the storage service to multiple 

VM instances in advance, such that it can be used later without 

worrying about bottlenecks due to I/O bandwidth contention. 

However, on the downside, the broadcast can take a long 

time to finish and potentially delivers more content than is 

actually needed during runtime. On-demand techniques on the 

other hand eliminate both disadvantages at the cost of dealing 

with the I/O bandwidth contention during runtime. This 

approach is widely used in IaaS datacenters for virtual disk 

images using copy-on-write: a locally stored QCOW2image is 

instantiated from a shared backing image that is located 

remotely on the image store (e.g. NFS server). In an attempt to 

alleviate the I/O contention, various solutions ranging from 

decentralizing the storage (e.g. by using parallel file system to 

using dedicated repositories and specialized prefetching 

technique have been proposed. In a broader sense, 

collaborative caching has been explored in the MPI-IO 

context. Our own previous work explores how to improve 

collective reads to a shared virtual disk image by means of 

pushing accessed chunks among the members of the group, in 

an attempt to anticipate and avoid direct access to the storage 

service. This paper focuses on exploiting content similarity on-

the- fly in order to enable multiple VM instances, even if they 

be- long to different dissemination groups, to collaborate, 

identify and exchange identical chunks of data in order to 

minimize the I/O pressure on the storage service under 

concurrency. To our best knowledge, we are the first to focus 

on this aspect in particular. 

 

III. EXISTING SYSTEM 

In Existing method the major direction that 

addresses the problem of I/O contention for on-the-fly 

data delivery during collective reads is the use of 

peer-to-peer collaborative techniques. In this class of 

solutions, the VM instances are aware of each other’s 

previously accessed data that is locally available and 

prefer to exchange the needed data among themselves 

rather than interact with the decoupled storage 

service, which risks the creation of bottlenecks due to 

I/O contention. The data transformation is done by 

deduplication to avoid the traffic and to improve I/O 

request performance the content similarity technique 

is used. 

 

              Disadvantages: 

 

� Content Similarity is Used  

� Reduces Amount of Data Transfer and No of Transfer 

� Lack of Resource Scheduling  

� Workload Balance is not Maintained 

� Lack of User Interface 

 

IV. SYSTEM ARCHITECTURE 
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provisioning a large number of inter-dependent 

VMs (e.g. part of the same virtual cluster running a 

large 
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Fig. 1 Magnetization as a function of applied field. 
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