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Abstract— Smart meters (SMs) measure and report users’ energy 

consumption to the utility provider (UP) in almost real-time, 

providing a much more detailed depiction of the consumer’s energy 

consumption compared to their analog counterparts. This increased 

rate of information flow to the UP, together with its many potential 

benefits, raise important concerns regarding user privacy. This 

paper investigates, from an information theoretic perspective, the 

privacy that can be achieved in a multiuser SM system in the 

presence of an alternative energy source (AES). To measure privacy, 

we use the mutual information rate between the users’ real energy 

consumption profile and SM readings that are available to the UP. 

The objective is to characterize the privacy-power function, defined 

as the minimal information leakage rate that can be obtained with an 

average power-limited AES. We characterize the privacy-power 

function in a single letter form when the users’ energy demands are 

assumed to be independent and identically distributed over time. 

Moreover, for binary and exponentially distributed energy demands, 

we provide an explicit characterization of the privacy-power 

function. For any discrete energy demands, we demonstrate that the 

privacy-power function can always be efficiently evaluated 

numerically. Finally, for continuous energy demands, we derive an 

explicit lower bound on the privacy-power function, which is tight 

for exponentially distributed loads. 

 
Index Terms— Smart meter, privacy, rate-distortion, informa-

tion leakage.  
I. INTRODUCTION  

WITH the adoption of smart meters (SMs) in energy distribution 

networks the utility providers (UPs) are able to monitor the grid more 
closely, and predict the changes  

in the demand more accurately. This, in turn, allows the UPs 

to increase the efficiency and the reliability of the grid by 

dynam-ically adjusting the energy generation and distribution, 

as well as the prices, thereby, also influencing the user 

demand. SMs also benefit the users by allowing them to 

monitor their own energy consumption profile in almost real 

time. Consumers can use this information to cut unnecessary 

consumption, or to reduce the cost by dynamically shifting 

consumption based on the prices dynamically set by the UPs.  
SM deployment is spreading rapidly worldwide [1]. In 

Europe, the adoption of SMs has been mandated by 
 
a directive of the European Parliament [2], which requires 80% 

SM adoption in all European households by 2020 and 100% by 

2022. However, the massive deployment of SMs at homes have 

also raised serious concerns regarding user privacy [3]. High 

resolution SM readings can allow anyone who has access to this 

data to infer valuable private information regarding user  

 

 

 

behaviour, including the type of electrical equipments used, the 

time, frequency and duration of usage [4], and even the TV 

channel that is being watched, as reported in [5]. The privacy of 

smart meter data is more critical for businesses, such as data 

centers, factories, etc., whose energy consumption behaviour can 

reveal important information about their business to competitors. 

As pointed out in [6], depending on the monitoring granularity 

different consumption patterns can be identified. With a 

granularity of hours or minutes, one can identify the user’s 

presence, with a granularity of minutes or seconds one can infer 

the activities of appliances such as TV or refrigerator, and with a 

granularity of seconds one could detect bursts of power and 

identify the activity of appliances such as microwaves, coffee 

machines or toasters.  
Several methods have been proposed in the literature to 

provide privacy to SM users while keeping the benefits of 

SMs for control and monitoring of the grid. In [7] user 

anonymization is proposed by the participation of a trusted 

third party. Bohli et al. [8] propose sending the aggregated 

energy consumption of a group of users and in [9] users 

protect their privacy by adding random noise to their SM 

readings before being forwarded to the UP. Similarly, [10] 

proposes quantization of SM readings.  
In all of the above work, privacy is obtained by distorting/ 

transforming the SM readings before being forwarded to the 

UP. However, energy is provided to the user by the UP, and in 

principle, the UP can easily track user’s energy consumption 

by installing its own smart measurement devices at points 

where the user connects to the grid. It seems that no level of 

privacy can be achieved under such a strong assumption; 

however, users can conceal the patterns corresponding to indi-

vidual devices and usage patterns by manipulating their 

energy consumption. This can be achieved either by filtering 

the energy consumption over time by means of a storage 

device such as an electric car battery [11]–[14], or by 

considering the availability of an alternative energy source 

(AES) [14], [15]. An AES can model a connection to a second 

energy grid, such as a microgrid, or a renewable energy 

source, such as a solar panel.  
In our model, we assume that the users can satisfy part of their 

energy demand from the AES. While the UP can track the energy 

it provides to the users perfectly, it does not have access 
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Fig. 1. Studied in this paper. The EMU receives the energy demand from multiple users, U1, . . . , UN , and decides how much of the energy demand of each 

user should be provided from the AES. The remainder of the energy demands are satisfied from the grid, which are measured and reported by the SMs to the 
UP. The privacy is measured through the information leakage rate, which measures how much information the UP receives about the input load [X(1), . . . , 
X(n)] by observing the SM readings [Y(1), . . . , Y(n)]. 
 
to the instantaneous values of the amount of energy the user 

receives from the AES. Hence, a certain level of privacy will be 

achieved depending on the amount of power available from the 

AES. For instance, if the power that the AES can provide is 

sufficient enough to satisfy, at any time, all the energy demand of 

the appliances, the privacy problem can be resolved in a 

straightforward manner, as no power is requested from the power 

grid. However, in general, the AES will be limited in terms of the 

average power it can support, and as we show in this paper, how 

the user utilizes the energy provided by the AES is critical from 

the privacy perspective. We measure the privacy through the 

mutual information rate between the user’s real energy 

consumption and the energy provided by the UP (the SM 

readings). Mutual information has previously been proposed as a 

measure of privacy in several works [16]–[18], and in particular, 

for SM systems in [10], [12], and [14].  
In our previous work [15], [19] we have characterized the 

minimum information leakage rate in the case of a single user 

with an average and peak power constrained AES. We have 

shown that there is a very close connection with this problem 

and the rate-distortion problem in lossy source compression 

[20] albeit with significant differences. Here we generalize 

our results to multiple users. In this scenario (see Fig. 1), 

multiple users, each with its own independent energy demand, 

share a single AES. The reason for users to share an AES can 

be economical. AESs, such as solar panels, and efficient 

energy storage units are expensive facilities, and may be 

shared by multiple parties to reduce cost. There could be also 

energy efficiency reasons: consider a scenario in which 

multiple smart meters belong to the same user; for example, 

different buildings of the same company. In such a case, the 

most energy efficient solution requires the centralized 

management of the AES for all the components of the system.  
We assume that there is one separate SM for each user, and 

the privacy is measured by the total information leaked to the 

UP about the users’ energy consumption. A single energy 

management unit (EMU) receives users’ instanta-neous 

energy demands and decides how much energy to provide to 

each user from the AES, while satisfying the average power 

constraint. We first introduce the privacy-power 

 
function which characterizes the minimal information leakage 

rate to the UP for a given AES average power constraint. We 

then provide a single-letter information theoretic char-

acterization of the privacy-power function for the multi-user 

scenario when the input loads are independent and identically 

distributed (i.i.d.) random variables. While the EMU can 

employ energy management policies with memory, our result 

shows that a memoryless energy management policy that 

randomly requests energy from the AES is optimal, signifi-

cantly simplifying the implementation.  
We consider both discrete and continuous input loads. For 

discrete input load distributions, we first show that the optimal 

output alphabet can be limited to the input alphabet without 

loss of optimality, which allows us to write the privacy-power 

function as the solution of a convex optimization problem 

with linear constraints. As a result, the privacy-power function 

with discrete input loads can be evaluated numerically in 

polynomial time. We also provide a closed-form expression 

for the privacy-power function when the input loads are 

independent and binary distributed. Using numerical 

optimization, we compare the optimal privacy-power function 

with two heuristic power allocation schemes. We consider a 

time-division heuristic scheme which, at each time instant, 

obtains the requested energy either from the grid or from the 

AES, but not from both simultaneously. We also consider an 

output load limiting heuristic scheme which limits the output 

load to a fixed maximum value in order to cover up any 

variation in the energy demand beyond this value. We numer-

ically show that our optimal scheme provides significant 

privacy gains compared to these heuristic energy management 

policies.  
While the numerical evaluation of the privacy-power func-

tion for general continuous input load distributions is elusive, 

we derive the Shannon lower bound (SLB) on the privacy-

power function, and show that this lower bound is tight when 

users have independent exponentially distributed input loads. 

For the latter case, we also show that the optimal allocation of 

the energy generated by the AES among the users can be 

obtained by the reverse waterfilling algorithm [20]. The users 

with low average input load satisfy all their demand from 
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the AES, while the users with higher average load receive for t = 1, . . . , n, such that       
 

the same amount of energy from the grid.  

Y(t) = ft(X(1), . . . , X(t), Y(1), . . . , Y(t − 1)), (2)
 

The rest of the paper is organized as follows. In Section II, 
 

we introduce the system model, and provide a single-letter 
with Xi (t) ≥ Yi (t) ≥ 0 for all 1 ≤ i ≤ N  and 1 ≤ t ≤ n. 

 
 

information theoretic characterization of the privacy-power  
 

function when users have i.i.d. energy demands over time. We measure the privacy achieved by an n−length energy
 

Then we show that the privacy-power function for independent 
management policy with the information leakage rate. Assum-

 

ing that the statistical behavior of the energy demand is  

users can be solved by simply minimizing the sum of the 
 

known by the UP, its initial uncertainty about the real energy 

individual privacy-power functions with a sum average power 
 

consumption can be measured by the entropy rate 
1
 H (X

n
 ).

 

constraint. The derivation of the privacy-power function for 1 n 
|Y 

n  n  
 

discrete input loads and its particularization to binary input This uncertainty is reduced to  n H (X  )  once the UP 
 

loads is addressed in Section III. Then in Section IV the 
observes the output load. Hence, the information leaked to

 

the UP can be measured by the reduction in the uncertainty,  

privacy-power function for continuous input loads is studied 
 

or equivalently, by the mutual information rate between the  

and particularized to the exponential distribution. Numerical 
 

input and the output loads In      n
1
 I (X

n
 ; Y

n
 ). Notice that if

 

results are provided in Section V. Finally, conclusions are we could provide all the energy required by the users from the  

drawn in Section VI. 
   

  AES, we could achieve perfect privacy, i.e., we would have  

    

II. SYSTEM MODEL 
 In  = 0 for all n, by letting Yi(t) = 0 for all i and t. However,

 

 in general the AES will be limited in terms of the average
 

We consider the discrete time SM model depicted in Fig. 1. power it can provide.       
 

We have N  users connected to the energy grid. The energy We are thus interested in characterizing the achievable level
 

requested by user i at time instant t is denoted by Xi (t) ∈ Xi, of privacy as a function of the average power P  that is
 

provided by the AES, given by 
       

where Xi  is the support set of the energy demand of user i.       
 

We consider the availability of an AES in the system. The 
N   1  n       

 

AES can provide energy to the users at a maximum average       
 P

n  = E 
_

 i=1 
 

t=1 (
X

i (
t
) − 

Y
i (

t
))_,

 
 

(3)
 

power of P . The AES reduces the energy requested from the n  
 

grid; but the primary use of the AES here is to create privacy _   _       
 

against the UP and other third parties.  where the expectation is take over the joint probability distri-
 

 

bution of the input and output loads. 
      

 

The energy flow in the system is managed by the EMU.       
 

Definition 2: An information leakage rate - average power
 

The EMU receives, at time t, the energy demands of all the  

pair (I, P ) is said to be achievable if there exists a sequence
 

users, i.e., the vector X(t) = [X1(t), . . . , XN (t)]. Part of the  

of energy management policies of duration n with limn→∞
 

energy demand of the users can be supported by the AES, 
 

while the remainder is provided directly from the energy grid. In  ≤ I , and limn→∞ Pn  ≤ P .       
 

We denote by Yi (t) i , the amount of energy user i gets Definition 3: The privacy-power function, I(P ), is the infi-
 

 ∈ Y  mum of the information leakage rates I  such that (I, P )  is
 

from the grid at time t, or equivalently, the reading of SM i at 
achievable. 

      
 

time t. We define Y(t) = [Y1 (1), . . . , YN (t)] as the aggregated       
 

The  privacy-power  function  characterizes  the  level of 

SM readings available to the UP at time t. The energy demand  

privacy that can be achieved by an average power limited AES.
 

of each user has to be satisfied fully at any time, that is, we  

The goal of the EMU is to achieve the minimum information
 

do not allow outages or delaying/shifting the user demand.  

leakage rate by optimally allocating the limited energy from
 

Moreover, we do not allow increasing privacy at the expense  

the AES over the users and time. 
      

 

of wasting energy, i.e., we have 0 ≤ Yi (t) ≤ Xi(t) for all t. 
      

 

This model of an AES is appropriate for energy sources
 

At the EMU, we consider energy management policies 
with their own large energy storage unit, which can provide  

which, at each time instant t, decide on the amount of power  

energy reliably at a certain rate for a sufficiently long duration 

that will be provided from the AES to each of the users based  

of time. A peak power constraint on the AES, in addition  
on the input loads up to time t, X

t
  = [X(1), . . . , X(t)], and  

to the average power constraint, is also considered in [19].
 

the output loads up to the previous time instant, Y
t−1

 =  

On the other hand, in [14] we have explicitly considered the
 

[Y(1), . . . , Y(t−1)]. We allow stochastic energy management 
 

energy generation process at the AES, in which case the EMU
 

policies, that is, the output load at time t, Y(t), can be a 
is limited not only by the average power it can pull from the

 

random function of X
t
  and Y

t−1
. We assume that, while the  

AES, but also the generated energy plus the energy available in 

UP knows P , the average power generated by the AES, it does  

the battery at each time instant. Such instantaneous constraints  

not have access to the instantaneous values of the energy users  

that vary over time depending on the energy management  
receive from the AES.  

 

 

policy and the energy arrival process at the AES, render the
 

Definition 1: Denote the vector of input and output load  

analysis significantly harder as they prevent us from invoking
 

alphabets for all the users as X 
N

   = [X1, . . . , XN ] and Y
N

 = 
 

information theoretic arguments that will be instrumental in
 

[Y1 , . . . , YN ], respectively. A length-n  energy management obtaining the single-letter results in this work.   
 

policy is composed of, possibly stochastic, power allocation 
Our goal here is to give a mathematically tractable expres- 

functions   
 

  

sion for the privacy-power function, and identify the optimal
 

ft  : X N  × t × YN  × (t−1) → YN , 

 
 

(1) energy management policy that achieves it. In the rest of
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the paper, we consider i.i.d. input loads for simplicity, as this will 

allow us to obtain a single-letter expression for the privacy-power 

function. Note that in most real-life applications there is a 

significant correlation among energy demands over time. The 

i.i.d. assumption allows us to characterize the opti-mal privacy-

preserving solutions, which will be instrumental in identifying 

solutions for more realistic energy consumption models. 

Moreover, the i.i.d input load model might be valid in scenarios 

where the energy consumption either does not have memory at 

any time scale, or can be modelled as i.i.d. over the time scale of 

interest. This could be the case, for example, when there is a huge 

number of applications in use at any time, e.g., in a data center, 

where the input load can be modelled as i.i.d. over time for 

different traffic/load states.  
In the next theorem, we show that if the input load vectors 

X(t) are i.i.d. over time with fX(x), we can characterize the 

function I(P ) in a single-letter format. Note that the 
instantaneous energy demands of the users can be correlated 
with each other.  

Theorem 1: The privacy-power function I(P ) for an i.i.d. 
input load vector X = [X1 , . . . , XN ] with distribution fX(x)

 

is given by     
 

I 
(P ) =  inf I (X; Y), (4)

 

fY|X (y|x): E N (Xi −Yi )]≤P,  
 

 [ i=1  
 

0≤Yi ≤Xi , i=1,..N 
where Y = [Y1 , . . . , YN ] is the corresponding vector of SM 
readings.  

Some basic properties of the privacy-power function I(P ) 
are characterized in the following lemma. The proof follows 

from standard techniques based on time-sharing arguments 

[20].  
Lemma 1: The privacy-power function I(P ), given above, 

is a non-increasing convex function of P . 
Next we prove Theorem 1.  

Proof: We first prove the achievability. Given a condi-

tional probability distribution fY|X(y|x) that satisfies (4), we 

generate each Y(t) independently using fY|X(y(t)|x(t)). The 

mutual information leakage rate is then given by I (X; Y) 
whereas the average power constraint in (4) is trivially sat-
isfied. For the converse, assume that there is an n−length 
energy management policy that satisfies the instantaneous and 
average constraints in (4). Let H (X) denote the entropy of the 
random variable X. The information leakage rate of the 
resulting output load vector will satisfy the following chain of 
inequalities:  
1 

I (X
n
 ; Y

n
) =

1 
[H (X

n
) − H (X

n
|Y

n
 )], (5a)

 

     

n  n 
 

  

1 
 n     

 

=   H (X(t)) − H (X(t) X
t−1

 Y
n
 ) , (5b) 

n   

     t=1      

     

_ 
     

  1 n  
_  _  

 

 

≥
 

[H (X(t)) − H (X(t)|Y(t))], (5c)
 

  
n
 t= 1  

     _     
 

  
1 

n     
 

=  I (X(t); Y(t)), (5d) 

 
n t=1  

     _     
 

  1 n N   
 

   

I _E _ =1 Xi (t) − Yi (t)
__, (5e)

 

 

≥  t=1  

 n 
 

     _ i
_  

 

 
 

 _ 
1 

 n  _ N 
Xi (t) − Yi(t)

__

,(5f)
 

≥ I 
  

E
 

 

  

=1  

n
 t=1 

 

≥ I(P ), 

_  i
_ 

 

    (5g)
  

where (5b) follows from the assumption that the input loads 

are i.i.d. over time, (5c) follows as conditioning reduces 

entropy; (5e) follows from the definition of the privacy-power 

function I(·); (5f) follows from the convexity of function I(·) 
stated in Lemma 1 and Jensen’s inequality; and finally (5g) 

follows since the energy management policy has to satisfy the 

average power constraint and I(·) is a non-increasing function 

of its argument.   
Remark 1.1: The achievability part of the proof reveals that 

the optimal energy management policy is memoryless; that is, 

it can be achieved by simply looking at the instantaneous 

input load, and generating the output load randomly using the 

optimal conditional probability, which simplifies the operation 

of the EMU significantly. This results in a stochastic energy 

management policy rather than a deterministic one.  
We note here that the same performance in Theorem 1 can 

also be achieved by a deterministic block-based energy 

management policy if the user knew all the future energy 

demands over a block of n time instants.  
We also note the similarity between the privacy-power 

function in (4) and the classical rate-distortion function [20]. The 

characterization of the privacy-power function for a multi-user 

SM system is equivalent to the rate-distortion function for a 

vector source with a difference distortion measure 
 

 N 
if yi  ≤ xi ,  ∀i 

 
 

d(x, y) = i=1 
x

i − 
y

i 
,
 (6)

 

 , otherwise.  
 

 ∞   
 

However, despite the similarity between the expressions of the 

rate-distortion and the privacy-power functions, their opera-

tional definitions are quite different. In the case of lossy 

source compression, there is an encoder and a decoder and the 

rate-distortion function characterizes the minimum number of 

bits per sample that the encoder should send to the decoder, 

such that the decoder can reconstruct the source sequence 

within the specified average distortion level. In lossy source 

compression, the encoder observes the whole block of n 

source samples, and maps them to an index from the 

compression codebook, which is agreed upon in advance.  
There are major differences between the two problems. In 

the SM privacy problem, there is neither an agreed code-book 

nor a digital interface. Here Y
n

 is the direct output of the 

“encoder”, rather than the reconstruction of the decoder based 
on the transmitted index. The EMU does not operate over 
blocks of input load realizations; instead, the output load is 
decided instantaneously based on the previous input and 
output loads. Similarly, in the SM privacy problem, there is no 
encoder or decoder either, although the EMU can be 

considered as an encoder and Y
n

 as the reconstruction of the 

input load X
n

 . However, the “distortion” constraint between 

the input and output loads in the SM privacy problem stems 
from the constraint on the available power that the AES can 
generate, rather than the limited rate of encoding as in the rate 
- distortion problem. 
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Having clarified the distinctions between the privacy-power 

and rate-distortion functions, we also remark the differences 

between our formulation of the SM privacy problem and the 

privacy-utility framework studied in [10]. In our privacy model 

the SM readings are not tempered, and thus, the SMs report the 

exact amount of energy received from the grid. On the other hand, 

in [10], the SM readings are considered as the samples of an 

information source, which are compressed before being 

forwarded to the UP in order to hide their real values; and hence, 

privacy is achieved at the expense of distorting the SM 

measurements. The distortion constraint in [10] is explicit and 

measures the utility of the compressed SM samples.  
If the users’ input loads are independent from each other, 

but not necessarily identically distributed, the multi-user 

privacy-power function in (4) simplifies further. The 

following chain of inequalities lower bound the privacy-power 

function under this assumption:  
 N 

H (Xi) − H 
 

Xi|X 
i−1, Y 

N
   , 

 
 

I (X; Y) = i=1  (7a)
 

 _ _ _  
 

 N N 
H (Xi|Yi ), 

 
 ≥ i=1 H (Xi) − (7b)
 

 i=1     

 _ _    
 

 N     
 

= i=1 I (Xi ; Yi),   (7c)
 

 _     
 

 N IXi  (Pi ),    
 ≥   (7d) _ 

i=1  
where we have defined Pi = E[Xi − Yi], and IXi (·) denotes the 

privacy power function for a system with an input load 

distribution fXi (xi ). We can achieve equality in (7b) with  
independent EMU policies for individual users, fY|X(y|x) = 

N
i fYi |Xi (yi|xi ). 

Consequently, we can achieve equality  
  
in (7d) by using the single user optimal energy management 
policy for each of the input loads separately, while satisfying 
the total average power constraint, 

 N 
 

 i=1 
P

i  ≤ 
P
 
. 

 

Following  the  above 
arguments,  the  problem  of  char-  

  
 

acterizing the optimal privacy-power function for a multi-user 

SM system is reduced to the following optimization problem 

 
     N   

 I(P ) = 
 inf  IXi 

(P ). (8)
 N  Pi    P i  
 

 i=1  

≤ 
i=1    

    _   
 

In the following sections, we use the information theoretic 

single-letter characterization of the privacy-power function in 

order to obtain either closed-form solutions or numerical algo-

rithms that give us the optimal energy management policies in 

multi-user SM systems with certain input load distributions 

and an average power constraint on the AES. 

 
III. DISCRETE INPUT LOADS 

 
In the previous section we have characterized the privacy-

power function for i.i.d. input loads as an optimization problem in 

a single-letter format in (4). Now we will show that this problem 

can always be efficiently solved for any discrete input load 

distribution. In addition, for the particular case where 

 
all the users have binary input loads, we give a closed-form 

expression for the privacy-power function.  
For discrete input and output alphabets, the characterization 

of the privacy-power function I(P) in (4) is a convex opti-

mization problem since the mutual information is a convex 

function 
of the conditional  probabilities, ,  for

 

N 
, x ∈  X 

N fY| X(y|x) 
 

y   ∈  Y  ,  and  the  constraints  are  linear.
 

Then, (4) can be solved numerically, e.g., by the efficient 

Blahut-Arimoto (BA) algorithm [20]. However, while the 

input load alphabet, defined by the system based on the 

energy demand profiles of the users, can be discrete, the 

output load alphabet is not necessarily discrete, and the output 

load, in general ,can take any real value. The next theorem 

shows that for discrete input load alphabets, the output load 

alphabet can be constrained to the input alphabet without loss 

of optimally, i.e., Y = X , and consequently, for any given 

discrete input alphabet the privacy-power function can always 

be computed efficiently. This result is only valid for i.i.d. 

input loads, but does not require users’ input loads to be 

independent from each other.  
Theorem 2: Without loss of optimality, for discrete input 

load alphabets, the output load alphabet YN
 can be 

constrained to the input load alphabet, i.e., YN
 = X 

N
.  

Proof: Let the discrete input load alphabets for each user 
be defined as a possibly infinite set  Xi  = {xi,1 

, . . . , x
i,mi  : 

x
i,j  

< x
i,j+1 }, 

where mi = +∞  if the input alphabet is countably infinite. 

Define Xi
C

 as the set of non-negative real numbers that are 
not in the input load alphabet for each user i. 

For any vector x = [x1 , . . . ., xN ] ∈ X 
N

  define the set 

Ω(x) (x
−

1, x1 ] × · · · × (x
−

N , xN ] 
 
where × denotes the Cartesian product and x

−
i = max{x ∈ {0, Xi } 

: x < xi }. Now assume that the optimal privacy-power function in 

(4) is achieved by the conditional probability 
distribution f  X(y x), which might take positive values for

 

 YC| |  
 

some yi   ∈ Xi . We define the following new conditional
 

probability distribution:  
 

f
Yˆ|X(yˆ|x) = 

0, if ∃i : yˆi  ∈ Xi
C

, 
 

_

Ω(yˆ) fY|X(y|x)dy,   if yˆi  ∈ Xi ,  ∀i. 
 

The new conditional probability function does not allow 
any output value in Xi

C
 for any i, i.e., the output alphabet is 

limited to the input alphabet. Instead, any output vector  
y = [y1, . . . , yN ], which has a non-zero probability according to fY|X(y|x), is 

assigned to a new output vector [ˆy1, . . . , yˆN ] 
such that 
 

yˆi  = min{x ∈ Xi  : x ≥ yi}. (9)

Notice that the energy management policy, fY
ˆ|

X(yˆ|x), is still 

feasible since the output load, at any time instant, is still less 

than what is requested by the appliances, i.e., yˆi ≤ xi , ∀i. 

Moreover, with this new conditional distribution the power 

load demanded from the AES can only have a smaller average 

value compared to the original energy management policy, 

since the output load is not reduced for any input load value. 
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Thus, it only remains to show that the new conditional distrib-
ution leaks at most the same amount of information to the UP. 
Notice that the new output load 

ˆ
 is a deterministic function 

Y 
of Y define in (9). Hence, from the information processing 
inequality, we have that ˆ  

form a Markov chain, 
X − Y − Y 

and consequently, I (   ,   )    I (   , 
ˆ
 ), which completes the 

X Y  ≥  X Y 
proof. 

 
A. Binary Input Loads 
 

The simplest discrete input load model we can consider is a 

binary input alphabet with independent Bernoulli input load 

distributions for all the users, i.e., Xi ∼ Ber(pi ), where  
pi = pXi (Li) and Xi = {Li, Hi} for i = 1, . . . , N . Observe that the average 

power required by the i−th user is given by PXi = Li + i (1 − pi), where i 

= Hi − Li. This power consumption model corresponds to a scenario 
in which  
the users, at each time instant, require either a constant high 

power load level Hi , or a constant low power load level Li, 
i.e., the standby power consumption level. When there is a 
power demand, the EMU fulfills this demand either obtaining 
the energy from the UP, or from the AES according 
to pY|X.  

From Theorem 2, the optimal output distribution Yi is also binary for 
all i. Hence, the power allocated from the AES to each user is a binary 
random variable over the set {0, i}. Note that, since we require Yi ≤ Xi , 

we can only provide energy from the AES to user i if Xi(t) = Hi and Yi (t) = 
Li,  
and consequently, pXi Yi (Li, Hi ) = 0 and pXi Yi (Li, Li ) = pXi (Li) = pi. The energy 
obtained from the AES is then 
directly related to pXi Yi (Hi , Li) by Pi  =    i pXi Yi (Hi , Li), 
and we can express the mutual information I (Xi ; Yi ) for the bivariate 
binary distribution 

    
= 

 pi   0     

, 

     
 

  p
Xi Yi  Pi  1 pi    Pi       

 

         

− − 
         

        i    i       
 

as a function of Pi  as follows:                
 

 

(P ) = 

Pi

log

  Pi   

p + 

Pi   lo

g 

 

p +

Pi  
 

I
Bi 

 

2 _   

i _ − 
      _  

i i   _ i   i _ 2 _ i  i 
 

− (1 − pi) log2 (1 − pi).  
Observe that IBi (Pi ) is a monotonically decreasing function of 

Pi , and IBi (∆i (1 − pi )) = 0. Consequently, the privacy-power 
function for the binary model for a single user is given by  

IBi (Pi ) = (IBi  (Pi ))+ , (10)
where (x)+ = max(x, 0). 

By particularizing (8) with IXi (Pi ) = IBi (Pi ) for all i, and solving the 
resultant problem, we find the optimal power 

allocation Pi∗ as              
 

   
 i 

p
i 

1 − p i if p 
i 

< p ,  
 

 

Pi∗ =    

  p i    i (11)
 

    i (1 − pi)  otherwise,   
 

where 
p  i (λ) 

=  1 
− e− 

λ i , and 
λ 

is chosen such that
 

N        

≤ 1. Then, the

 

i=1 Pi∗ = P . Note that p  i satisfies 0 ≤ p  i 
  

 
privacy-power function for the multiple users with 

independent binary input load distributions is given by  
  N      

 

IB (P ) =  IBi (P ∗), (12)
 

  
i=1 

      

  _      
 

  N _HB(pi ) − ppi
i HB(p  i ) _+ , (13) 

 
= i=1  

  _      
 

 

where HB(p) denotes the entropy of a Ber(p) distribution. 
Each  user  can  achieve  full  privacy IBi (P ∗)   =   0  by

 

 i  

obtaining an average power of PXi  − Li  = i(1 − pi) from
 

the AES, the remaining power Li is obtained from the grid 

without incurring any lost of privacy. However, if the average 

power obtained from the AES is below PXi − Li then the energy 

obtained from the grid comes at the expense of a loss in privacy. 

Note that Pi∗ and IB(P ) depend on the input load parameters PXi , 

Li, i , and pi in a non-straightforward manner. We postpone the 

detailed analysis of this privacy-power function to Section V. 

 
IV. CONTINUOUS INPUT LOADS 

 
For continuous input loads, the optimal output alphabet is 

also continuous. Consequently, efficient algorithms, such as 

the BA algorithm, do not yield the optimal solution to (4). In 

this case, we provide a lower bound on the privacy-power 

function by using the Shannon lower bound. We then show 

that this lower bound is achievable when the users have 

independent exponentially distributed input loads.  
Using the SLB [20], for any input load distribution, we have  

IXi (Pi ) ≥ (h(Xi ) − ln (Pi ))+  nats, (14) 
where h(X ) denotes the differential entropy of the continuous random 
variable X . Observe that, 

I (Xi , Yi) = h(Xi) − h(Xi |Yi ), (15a) 

= h(Xi) − h(Xi − Yi |Yi ), (15b) 

≥ h(Xi) − h(Xi − Yi ), (15c) 

≥ h(Xi) − h(Exp(E[Xi − Yi ])), (15d) 

= h(Xi) − ln(Pi ), (15e)  
where we have used Exp(λ) to denote an exponential random 
variable with mean λ. In the above chain of inequalities, (15c) 
follows as conditioning reduces entropy, and (15d) follows 
since exponential distribution maximizes the entropy among 
all nonnegative distributions with a given mean value [20].  

Next, we present the necessary and sufficient conditions for any 

piecewise continuous input load distribution fX (x) to achieve the SLB, 

together with the conditional probability distribution fY |X (y|x) achieving 

it. We denote by u(x), the unit step function which assigns 0 for x < 0, and 

1 for x ≥ 0. The Dirac delta function is denoted by δ(x). We use f (x) to 
denote the first order derivative of f (x) and f (x+) =   lim 

i x→x
+

i 
f (x) and f (x−) =   lim   f (x) and x → x+  and x → x− 

i x→x−i i i 

mean that x → xi from the left and right, respectively. Finally, we define f (xi ) 

= f (x+
i ) − f (x−i ). 
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Theorem 3: Suppose that the input load distribution fX (x) is 

continuous on R+ except for a countable number of jump 

discontinuities or non-differentiable points XD = {x1, . . . , xD }. Then, 

the SLB (14) is achieved for all P satisfying gY (y) ≥ 0, ∀y ∈ R+, 

where 

gY (y) = gYC (y) + gYD (y) (16)
 
is a mixture of a continuous and a discrete function specified 

as follows: 

gYC (y) = fX (y) + E[V ]fX (y),  y ∈ R+/XD , 
D 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. The reverse waterfilling solution for the optimal power provided to 
each user from the AES. 

       E  
]
 

X (xi )δ(y − xi ),  y ∈ XD . 
 the conditional distribution [19]                  

 

gYD (y) =   [V                                     
 

           i=0                                            
 

           _                      λi   (x−y)   x       
 

For all P , at which the SLB is achieved, the output distribution 
      

f
Yi |Xi (y

|x) = 
  

e−   

Pi e λi fYi (y), 
 

 

      Pi    
 

is given by fY (y) = gY (y) and the optimal conditional output 
where fYi   is a mixture of a continuous and a discrete distrib- 

 

load distribution 
reads          fY (y)  where 

 

v    fY |X (y|x) = fV (x − y) fX (x)  ution specified by                           
 

fV (v) = 
 1 

e 
− E[V ] 

u(v). 
                                           

 

 E[V ]                         

Pi 
   

1 e−        

Pi 
  

 

Proof:  To show this results, we need to find the con-     f   (y) = 1      y +    
 

          λi     

ditional distribution fY |X (y|x) that satisfies the SLB with      Yi  _ −  λi _  λi            λi δ(y). 
 

equality [20]. We require the random variables V  = X − Y Then the privacy-power function for a single user with an 
 

and Y  to be independent, and V  to be distributed according 
exponential input load with mean λi  can be explicitly charac-  

to an exponential distribution 
 

V 
  ∼ Exp(P )  with mean P . 

 

   terized as follows:                           
 

We first obtain the output distribution fY (y) from its Laplace                _ 

                 
 

transform LfY (s) = L(fY (y))(s) as 
         

IEi (
P

i ) = 
ln 

λi 
, 
    

if Pi  ≤ λi , 
 

 

         Pi     (19) 
 

     f  (s) =  Lf
X (s) ,           0, _         otherwise.  

 

    

L Y 

     

 

                           

        LfV (s)       By particularizing (8)  with  
IXi 

(P )  = 
IEi

(P )  for all i,
 

           =   f (s) (1 + E[V ]s).                      i       i 
 

           L X          and solving the resultant problem, we find the optimal AES 
 

Then, it  follows that fY (y) is given by (16). The condi- power allocation among users, P ∗, as the well-known reverse 
 

 

waterfilling solution P ∗ =  λ, 
  i 

λ  <  λi ,
   

P ∗ =  λi , if 
 

tional distribution fY |X (y|x) is obtained using the fact that  if and 
 

         i                 N    i  

fX |Y (x|y) =  fV (x − y). Finally, it  can be shown that λ 
≥ λ , where λ is chosen such that    i=1 P ∗ = P . 

 

  i                        i  
is  illustrated 

 

0
∞ fY (y)dy  =  1; and thus, the achievability is guaranteed  The reverse  waterfilling  power allocation  

 

           
 

by requiring            +     in Fig. 2 for three users with independent exponentially distrib- 
 

fY (y) ≥ 0, ∀y ∈ R .                                       
 _       

uted energy demands with means λ1 , λ2, and λ3 , respectively. 
 

Remark 3.1: If the achievability condition in Theorem 3 is 
 

satisfied for a given Pmax, it is satisfied at any P  ≤ Pmax. 
The optimal reverse water level is given by λ, where the 

 

heights of the shaded areas in the figure correspond to the aver- 
 

Then it follows that, there is a unique critical average power 
age AES powers allocated to the different users. We observe 

 

level, P0, such that IX (P ) = h(X ) − ln (P ) for all P  ≤ P0 
 

that the optimal energy management policy satisfies all the 
 

and IX (P ) > h(X ) − ln (P ) for all P > P0.    energy demands of the users  whose average  input load is 
 

To find a lowerbound on the privacy-power function in the 
below λ, directly from the AES. Hence, no information is 

 

case of multiple users with continuous input load distributions, 
 

we replace IXi (Pi ) with (h(Xi)    + 
in (8), and find leaked to the UP about the energy consumption of these users; 

 

− ln (Pi )) 
user 1 and user 3 in the figure. The rest of the users receive 

 

the corresponding optimal power allocation Pi∗ as  
 

                      exactly the same amount of power λ from the AES, and the 
 

   
Pi∗ =   λ,  if eh(Xi ) > λ,  

(17) 
remainder of their energy demand is satisfied from the grid. 

 

     e h(Xi ),  otherwise,   Finally, the privacy-power function for multiple users with 
 

                      exponential input loads can be expressed as   
 

where λ is chosen such that  N   P ∗ = P . Then the privacy-             
N                

+     
 

              i=1  i                        

λ
i
 

       
 

            users can be lower-bounded by                               
 

power function for multiple                 E(P  ) =       ln _ λ __ .  (20)  
          

N 
                

I 
   

i=1 
_ 

       

                                _                    
 

IX(P )  ≥   (h(X i )  − ln(λ) )+  nats. (18)_ 
i=1 

 
A. Exponential Input Loads  

For an exponential input load distribution with mean λi , i.e., Xi ∼ 

Exp (λi ), the SLB in (14) is achievable by using 

 
V. NUMERICAL RESULTS 

 
In this section we numerically analyze the privacy-power 

function in a SM system with various input load distributions 

and number of users, by explicitly evaluating the information 

theoretic optimal leakage rate expressions. 
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Fig. 3. Privacy-power  function  for a binary input-output  system with Fig. 5.   Individual privacy achieved by three users IXi (P ), i = {1, 2, 3}, 
different p values. all with the same input load alphabet δi  = 1 i = {1, 2, 3}, but with different 

input load distributions as a function of the average AES power P . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Privacy-power function for a uniform input load, and different EMU 
policies. 
 
 
A. Single User Scenario 
 

In order to illustrate the behaviour of the privacy-power 

function for a simple binary input load system, we first  
consider a single user with an input load alphabet X = Y = {0, 

1}, and pX (0) = p. We plot the I(P ) function for the  
binary input load in Fig. 3 for different p values. As expected, 

the required average power from the AES is maximum when 

the user wants perfect privacy, and it is zero when no privacy 

is required. We also observe that the privacy-power function 

is decreasing in P and convex. Another interesting 

observation from the figure is the fact that the I(P ) curves for 

two different input load distributions, i.e., different p values, 

might intersect. This means that, to achieve the same level of 

privacy a lighter input load might require lower or higher 

average power than a heavier input load. Also note that the 

two different input load distributions, say p = 0.1 and p = 
0.9, have the same level of privacy when there is no AES in 

the system; however, the input load with lower average 

energy demand, i.e., the one with p = 0.9, achieves perfect 

privacy with a much lower P value.  
Next, we use the discrete uniform distribution to compare 

the privacy protection achieved by the information theoretical 

optimal policy derived here, with different heuristic policies. 

In this case, the input load has a uniform distribution U (x) 

with input load alphabet X = {0, c, 2c, . . . , (N − 1)c}, where 

 
 

c  = 2 is a constant used to impose a mean value of  

N −1 
 

E[X ] = 1. Based on Theorem 2, the output load alphabet can 

be limited to X without loss of optimality. We set N = 21 and 

in Fig. 4 we plot the privacy-power function for the optimal 

strategy obtained by the BA algorithm together with the 

privacy-power functions of the following two heuristic 

strategies:  
1) Time Division: In this policy, at each time instant, the 

EMU gets all the energy needed by the user, either from the 

AES or from the grid, but not from both simultaneously. 

Then, to satisfy the average power constraint at the AES, the 
EMU obtains energy from the AES with probability P . The  

E[X ]  

information leaked to the UP, is thus given by 
  

 

   
 

I (X ; Y ) = H (X ) − H (X |Y  = 0) 

P    
 

  

 

    

E[X ]    
 

− 
H (X Y  = x) 1  P  ,  

 

E[X ] 
   

| _  − _  
 

�  _  
=   1 

P 

log2 N. 

 

−
 E[X ] 

 

2) Limit Maximum Output Load: In this policy, we use the 

AES to limit the maximum energy received from the grid. At 

each time instant, we get all the energy from the grid X (t) = Y 
(t) if X (t) < kc, whereas if X (t) ≥ kc we get Y (t) = kc from 

the grid and the remaining energy is taken from the AES. In 

this case, for each k = 0, . . . , N − 1, the average power 

requested from the AES is given by P = (N − 1 − k) (N − k) 

2
c
N , and the information leaked to the UP is 

 
I (X ; Y ) = H (X ) − Pr(Y  = kc)H (X |Y  = kc),  

= log  N 

− 

N − k log (N 

− 

k). 
 

 2 2N
2
   

 

In Fig. 4, we can observe that given an average power limited 
AES, the privacy achieved by both of these heuristics is 
significantly lower than that of the optimal EMU policy. 

 
B. Multi-User Scenario  

Next we consider a multi-user scenario with N = 3 users. 

We assume equal binary load levels Hi = 1 and Li = 0, but 
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Fig. 6. Individual privacy achieved by three users IXi (P ), i = {1, 2, 3}, each 

with a different input load alphabet and input load distribution, as a function 
of the average AES power P . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7. I(P ) with respect to the average AES power P for binary input loads 
with different number of users. 

 

different average energy demands with p1  = 0.9, p2  = 0.5, 
and p3   =  0.1; thus we have PX1    =  0.1, PX2 =  0.5,

 

P = 0.9. Fig. 5 illustrates the privacy for each user IBi 
(P ∗)

 

X3  i 
 

as a function of the average power P available at the AES. 
Notice that, although users 1 and 3, in the absence of an AES, 

leak the same amount of information to the UP, since HB(0.1) 

= HB (0.9), user 1 achieves perfect privacy much more rapidly 
since it has a lower average energy demand. Also note that, 
user 3 achieves perfect privacy for a much higher value of P , 
even compared to user 2, which leaks the highest amount of 
information when there is no AES, as it has the highest 
entropy.  

Remember that, as opposed to the exponential input load  
scenario,  in  the binary  case, the privacy-power  function

 

IBi (P ∗) for each user does not depend solely on the average
 

i     

power demand of the user, but on both of the parameters
 

i and pi .  To  illustrate this  dependence, we  consider a 
scenario again with N  =  3  users, but with equal average

power demands PXi =i (1 − pi), while Li = 0 for all i.

We choose different parameters i   and pi for each user.
Fig. 6 again shows the privacy of each user as a function of 

the average power P . Observe that the optimal power 

allocation quickly reduces the information leaked by user 2, 

and achieves perfect privacy for this user much before the 

other two, although this is the user leaking the most amount of 

information in the absence of an AES. The input power loads 

for users 1 and 3 have equal entropy, but with different 

behaviours; user 1 demands large amounts of energy but very 

rarely, while user 3 demands low amounts of energy very 

frequently. The optimal EMU policy seen by these users also 

differs significantly. While for user 1 the privacy-power 

function is a concave monotonically decreasing function, for 

user 3 the privacy-power function is monotonically decreasing 

but piecewise convex.  
Next, we study the effect of the number of users on the 

privacy-power function. In Fig. 7, we depict the optimal 
information leakage rate with respect to the available average 
AES power for binary input loads with different number of 
users N = {1, 2, 3}. We can observe that with more than one 
user, we have different regimes of operation corresponding to 
the number of users that receive energy from the grid. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8. I(P ) with respect to the average AES power P for exponential input 
loads with different number of users. 
 
Similarly, in Fig. 8 we consider the scenario with exponential 
input loads. In both models, regardless of the number of users 
in the system the total average power consumed by the users 

is fixed to PX . In the figures we set PX = 1. As expected, if the 

average power provided by the AES is equal to the total 
average power demanded by the users, perfect privacy can be 

achieved. Instead, as the average power of the AES goes to 
zero, all the information is revealed to the UP, and thus, the 
information leakage rate is equal to the sum of the entropies of 

all the input loads. In between these two extremes the privacy-
power function exhibits a monotone decreasing convex 
behaviour, and the information leakage rate increases with the 

number of users in the system. 

 
VI. CONCLUSIONS 

 
We have introduced and studied the privacy-power function, 

I(P ), which characterizes the achievable information theoretic 
privacy in a multi-user SM system in the presence of an AES. We 
have provided a single-letter information theoretic 

characterization for I(P ), and showed that it can be evaluated 
numerically when the input loads are discrete. We have also 
provided explicit characterization of the privacy-power function 
for binary and exponential input load distributions. We have 
shown that the optimal allocation of the energy provided by the 
AES in the exponentially distributed input load scenario can be 
derived using the reverse waterfilling 

algorithm, which resembles the rate-distortion function for 

multiple Gaussian sources.  

We believe that the proposed information theoretic frame-

work for privacy in SM systems provides valuable tools to 
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identify the fundamental challenges and limits for this critical 

problem, whose importance will only increase as SM adoption 

becomes more widespread. Many interesting research 

problems implore further studies, including time correlated 

input loads, systems with multiple EMUs, as well as cost and 

pricing issues considering dynamic pricing over time. 

 
REFERENCES 

 
[1] P. Wunderlich, D. Veit, and S. Sarker, “Adoption of information 

systems in the electricity sector: The issue of smart metering,” in Proc. 
Amer. Conf. Inf. Syst., Seattle, WA, USA, Aug. 2012, paper 16.   

[2] European Union “Directive 2009/72/EC of the European parliament and 
of the council of 13 July 2009 concerning common rules for the internal 
market in electricity and repealing directive 2003/54/EC,” Off. J. Eur. 
Union, vol. 52, no. L211, pp. 55–93, Aug. 14, 2009   

[3] P. McDaniel and S. McLaughlin, “Security and privacy challenges in the 
smart grid,” IEEE Security Privacy, vol. 7, no. 3, pp. 75–77, May/Jun. 
2009.  

[4] A. Prudenzi, “A neuron nets based procedure for identifying domestic 
appliances pattern-of-use from energy recordings at meter panel,” in   
Proc. IEEE Power Eng. Soc. Winter Meeting, New York, NY, USA, 
Jan. 2002, pp. 941–946.   

[5] U. Greveler, B. Justus, and D. Loehr, “Multimedia content identi-
fication through smart meter power usage profiles,” in Proc. Com-put., 
Privacy, Data Protection (CPDP), Brussels, Belgium, Jan. 2012,   
pp. 383–390.   

[6] A. Molina-Markham, P. Shenoy, K. Fu, E. Cecchet, and D. Irwin, “Private 

memoirs of a smart meter,” in Proc. 2nd ACM Workshop Embed-ded Sens. 

Syst. Energy-Efficiency Building (BuildSys), 2010, pp. 61–66. [Online]. 

Available: http://doi.acm.org/10.1145/1878431.1878446   
[7] C. Efthymiou and G. Kalogridis, “Smart grid privacy via anonymization 

of smart metering data,” in Proc. 1st IEEE Int. Conf. Smart Grid 
Commun., Gaithersburg, MD, USA, Oct. 2010, pp. 238–243.   

[8] J.-M. Bohli, C. Sorge, and O. Ugus, “A privacy model for smart 
metering,” in Proc. IEEE ICC, Cape Town, South Africa, May 2010,   
pp. 1–5.   

[9] S. Wang et al., “A randomized response model for privacy preserving 
smart metering,” IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1317–1324, 
Sep. 2012.   

[10] L. Sankar, S. R. Rajagopalan, S. Mohajer, and H. V. Poor, “Smart meter 

privacy: A theoretical framework,” IEEE Trans. Smart Grid, vol. 4, no. 2,  

pp. 837–846, Jun. 2013.   
[11] G. Kalogridis, C. Efthymiou, S. Z. Denic, T. A. Lewis, and R. Cepeda, 

“Privacy for smart meters: Towards undetectable appliance load signa-
tures,” in Proc. 1st IEEE Int. Conf. Smart Grid Commun., Gaithersburg, 
MD, USA, Oct. 2010, pp. 232–237.   

[12] D. Varodayan and A. Khisti, “Smart meter privacy using a rechargeable 
battery: Minimizing the rate of information leakage,” in Proc. IEEE Int. 
Conf. Acoust., Speech, Signal Process., Prague, Czech Republic, May 
2011, pp. 1932–1935.   

[13] W. Yang, N. Li, Y. Qi, W. Qardaji, S. McLaughlin, and P. McDaniel, 
“Minimizing private data disclosures in the smart grid,” in Proc. ACM 
Conf. Comput. Commun. Secur., Raleigh, NC, USA, Oct. 2012,   
pp. 415–427.  

[14] O. Tan, D. Gündüz, and H. V. Poor, “Increasing smart meter privacy   
through energy harvesting and storage devices,” IEEE J. Sel. Areas 
Commun., vol. 31, no. 7, pp. 1331–1341, Jul. 2013. 

[15]  D. Gunduz  and J. Gomez-Vilardebo, “Smart meter  privacy
in the  presence  of an alternative  energy source,” in  Proc.  IEEE
Int. Conf. Commun., Budapest, Hungary, Jun. 2013, pp. 2027–2031. 

 
 
[16] D. Agrawal and C. C. Aggarwal, “On the design and quantification of 

privacy preserving data mining algorithms,” in Proc. Symp. Principles   
Database Syst., Santa Barbara, CA, USA, May 2001, pp. 247–255. [17] 

D. Rebollo-Monedero, J. Forné, and J. Domingo-Ferrer,  
“From t-closeness-like privacy to postrandomization via information 
theory,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 11, pp. 1623–1636, 
Nov. 2010.  

[18] L. Sankar, S. R. Rajagopalan, and H. V. Poor, “Utility-privacy tradeoffs 
in databases: An information-theoretic approach,” IEEE Trans. Inf. 
Forensics Security, vol. 8, no. 6, pp. 838–852, Jun. 2013.   

[19] J. Gomez-Vilardebo and D. Gunduz, “Privacy of smart meter systems 
with an alternative energy source,” in Proc. IEEE Int. Symp. Inf. Theory, 
Istanbul, Turkey, Jul. 2013, pp. 2572–2576.   

[20] T. M. Cover and J. A. Thomas, Elements of Information Theory. 
Hoboken, NJ, USA: Wiley, 1991.  

 
 

 

 
 
 
 

 

88 


