

40

 Design of FFT Processor Supporting Novel

Multiplier for Fully Homomrphic Encryption

Susi.Mu

M.E II
nd

 year, Dept of ECE,
K. Ramakrishnan College of Engineering,

Trichy, India

susimuthu20@gmail.com

Nagarajan.N.R.
Assistant Professor, Dept of ECE,
K.Ramakrishnan college of Engineering,

Trichy

naguube@gmail.com

Abstract— Security is a substantial requisite in day-to-day

applications. Cryptography is one of the modes to provide

security for network and communication. This paper proposes a

multiplier design for fully homomorphic encryption. Fully

Homomorphic Encryption (FHE) is an encryption technique

which supports communication to be performed on a ciphertext.

This multiplier design is used to perform multiplication

operation of data in the encrypted form. The operation over

cipher text increases the security level. The multiplication

operation is carried out by the use of Fast Fourier Transform

(FFT) processor. The design is mainly concerned with reduction

in delay and area consumption and focuses mainly on increase in

speed. Delay is reduced by use of carry save adder in a pipelined

architecture.

Keywords: Multiplier, Fully Homomorphic Encryption, Fast

Fourier Transform

I. INTRODUCTION

Very Large Scale Integration (VLSI) is the process of

forming an integrated circuit which involves a combination of

a large number of transistors. It thus helps in combining

processors and memory into a single unit. Cryptography

involves provision of security to data transmitted form a

source to a destination. Data from the source is encrypted by

use of an algorithm employing keys and then they are

transmitted. On reception of data at the destination it is

decrypted by use of the same algorithm and same or different

key. Processing of data in its encrypted form increases the

security level and this phenomenon is called as Fully

Homomorphic Encryption (FHE). The multiplier designed in

the paper is capable of operation in FHE mode. The

multiplication operation is performed with the use of FFT

processor. The core operation of the processor is performed

using radix 16 and modular multiplication operation which

enhances the system speed. Radix 16 unit comprises of two

operations namely summing and shifting performed by carry

save adders and shifters respectively.

A. RADIX 16 UNIT

The term radix is defined as the FFT decomposition

size. In general the transform size should be power of the

radix. In the design of FFT processor the design of radix-16

unit is simple consisting of sum unit and shifting unit. The

sum unit consists of a number of 14 carry-save adders that

operate in a pipelined fashion. Carry save adder is chosen on

comparison with the other adders that form complex adder

circuits. Pipelined system is incorporated in order to perform

faster computation by taking multiple inputs and providing

instantaneous output. The shifter is used to perform left shift

of one bit. The input as well as the output of the radix 16 unit

consists of 16 samples each of 64 bits. The input provided at

each stage of the summer is different only because of the

shifting operation that takes place prior to the summing

operation.

Figure: 1 Block diagram for Radix 16 unit

B. MODULAR MULTIPLICATION

The modular multiplication unit is an important

sector to compute the Fast Fourier Transform in the FFT

processor block. Modular multiplication is used to perform

faster computation. This is done only with respect to integers.

All operations involved in modular arithmetic are performed

41

with the usage of reminders. In the modular multiplication

block the two inputs comprise of the output from radix-16

block and the output of the multiplexer which is the twiddle

factor. These factors are the coefficients used to combine

results from previous stages to provide as input to the next

stage. The registers used in modular multiplication block are

32 bit registers. Both the inputs to the modular multiplication

block consist of 64 bits. The multiplier is a pipelined structure

which can perform multiple modular operations

simultaneously thereby reducing time consumption. The

modular multiplication process consists of operations such as

segmentation, addition, shifting and subtraction followed by

combining.

Figure: 2 Block diagram for modular multiplication unit

C. FFT PROCESSOR
The multiplier design can be achieved by first

constructing the FFT processor that helps to obtain the result

of multiplication. The multiplication process is based on

convolution which is performed by the FFT processor. On

resolving carries between the digits of the convolution result

the final product of multiplication can be obtained.

The FFT multiplication involves an algorithm which

has five distinct steps. In order to compute a product of X

times Y, The numbers X and Y are expressed as sequence of

digits followed by convolution and resolving caries.

The algorithm can be declared on basis of five stages

namely

1. Decomposition-To represent A and B as a(n) and

b(n).

2. FFT-Computation of FFT of a(n) and b(n).

3. Component-wise product-C[i]=FFT(A)[i]*FFT(B)[i].

4. IFFT-c(n)=IFFT(C).

5. Resolve carries

Figure: 3 Block diagram for FFT processor

D. MULTIPLIER

The multiplier design involves the forward and

reverse operation of FFT processor. Output of a processor is

provided as one of the inputs to the other processor to compute

the inverse transform output. The output from the FFT

processor is then processed for bandwidth resolution. This

processing is handled by the resolve carries unit. The final

output provides the product of the input ciphertext.

II. RELATED WORK

In[1] the concept of Software as a Service in cloud took place

with the non existence of Fully Homomorphic Encryption

scheme. In [2] the evolution of Fully Homomorphic

Encryption took place. But this scheme did not suite actual

deployment due to complexity of lattices. In [3] optimizations

are made to develop a working implementation. In [4] the

implementation was made on x3500 sever but remained

impractical due to high latency. In [5] techniques are provided

for hardware implementation using Advanced Encryption

Standard (AES) algorithm. In [6] implementation of FFT

processor with pipelined stages is exhibited. In [7] concept of

shared memory architecture is explained which is used to

reduce the memory usage. [8] and [9] describe the hardware

implementation using different platforms.

III. PROPOSED SYSTEM

In this paper, the design of a multiplier for Fully

Homomorphic Encryption is proposed. Here the main aim is

to improve the security of data transmitted for processing to

overcome the drawbacks of earlier stages of cloud computing

[1]. To satisfy security needs Gentry put forth [2] FHE

scheme. FHE first implementation was performed [4] on a

GPU processor with high memory and device capabilities.

This FHE scheme is further implemented to develop a means

which could solve the urge for security. The core unit of the

system is the FFT processor. This processor involves two

main operations of summing and shifting. The main concern

42

remains in reduction of time which is achieved using the

pipeline structure. The sum unit makes use of Carry Save

Adder to reduce the delay by employing pipelined stages. The

shift unit performs one bit left shift operation at every stage.

The multiplier incorporates two Fast Fourier

Transform processors. One processor is responsible in

performing forward operation while the other provides input

to the former processor in order to provide the inverse

transform output.

Figure: 4 Block diagram of multiplier for FHE

The output of the FFT processor after inverse

operation is 16x64 bits. To reduce the bandwidth consumption

of the output the size of the output is reduced to 16x24 bits by

a resolve carry block. The purpose of resolve carry block is is

bandwidth resolution but taking into consideration only the

sum units and part of the carry bits.

IV. RESULTS AND DISCUSSION

The multiplier design is simulated using Xilinx 14.2

software. The core of multiplier design is the Fast Fourier

Transform processor. The processor utilizes 63% of device

specifications of Spartan 3E.

A.RADIX 16 UNIT

The radix 16 unit designed using two modules namely the

sum unit and shifting unit. The sum unit is the high resolution

unit consisting of 16 inputs in pipelined stages producing a

single output of partial sum and shift carry.

(a)

(b)

Fig: 5 Simulation results for sum unit of radix 16 module

(a) Input for sum unit (b) Sum and carry outputs of sum unit.

B. Modular multiplication

This module is used to enhance the speed of FFT. The
process involves a series of arithmetic and logical operations.
One of the inputs to this unit is the twiddle factor.

(a)

(b)

Fig: 6 Simulation results of modular multiplication unit

(a) Status with reset 0 (b) Status with reset 1

C. FFT PROCESSOR

The FFT processor provides a faster means of processing
to provide product in the ciphertext form. This processor
makes use of 63% use of Spartan 3E and can be made more
efficient using Graphics Processing Unit (GPU) processor.

43

(a)

(b)

Fig: 7 Simulation results of Fast Fourier Transform
processor

(a) 16x64 bits input (b) 16x64 bits output

D. DEVICE UTILIZATION

The FFT processor is implemented and simulated using
Spartan 3E device which is a part of Xilinx 14.2 software. The
delay is very much reduced and suitable for faster processing.
Among this utilization the major portion is occupied by radix
16 unit which is about 32% of the device capabilities of
Spartan 3E.

Fig: 8 Device utilization of FFT processor

 References

[1] K Bidet E. and Joanblanq (1995), “A fast single chip implementation of
complex point FFT,” IEEE J. Solid-State Circuits, vol. 30, no. 3, pp.
300-305.

[2] Black J., Rogaway P. and Shrimpton T. (2002), “Encryption-scheme
security in the presence of key-dependent messages,” SAC., pp. 62-75.

[3] Burnikel C., Fleischer R., Mehlhorn K. and Schirra S. (2000), “Efficient
exact geometric computation made easy,” Proc. 15th Annu. Symp.
Comput. Geometry, pp. 341-350.

[4] Canetti R., Krawczyk H. and Nielsen J.B. (2003), “Relaxing chosen
ciphertext security,” Proc. Of Cryptography, pp.565-582.

[5] Cohen A. and Parthi K. (2010), “GPU accelerated elliptic curve
cryptography in GF(2m),” Proc. 53rd IEEE Int. MWCSAS, pp. 57-60.

[6] Cui X., Chen Y. and Mei H. (2009), “Improving performance of matrix
multiplication and FFT on GPU,” in Parallel and Distributed
Systems(ICPADS), 15th International Conference on IEEE.

[7] Emmart N. and Weems C.C. (2011), “High precision integer
multiplication with a GPU using Strassen’s algorithm with multiple FFT
sizes,” Parallel Process. Lett., vol. 21,no. 3, pp. 359-375.

[8] Gentry C. (2009), “A Fully Homomorphic Encryption Scheme,” Ph.D.
Dept. Comp. Sci., Stanford Univ.

[9] Jia L., Gao Y., and Tenhunen H. (2000), “Efficient VLSI
implementation of radix-8 FFT algorithm,” Proc. IEEE Int. Symp. On
Circuits and System, ISCAS.

[10] Kalalch K. and David J. P. (2005), “Hardware implementation of large
number multiplications by FFT with modular arithmetic,” Proc. 3rd Int.
IEEE-NEWCAS Conf., pp. 267-270.

