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Abstract— Security is a substantial requisite in day-to-day 

applications. Cryptography is one of the modes to provide 

security for network and communication. This paper proposes a 

multiplier design for fully homomorphic encryption. Fully 

Homomorphic Encryption (FHE) is an encryption technique 

which supports communication to be performed on a ciphertext. 

This multiplier design is used to perform multiplication 

operation of data in the encrypted form. The operation over 

cipher text increases the security level. The multiplication 

operation is carried out by the use of Fast Fourier Transform 

(FFT) processor. The design is mainly concerned with reduction 

in delay and area consumption and focuses mainly on increase in 

speed. Delay is reduced by use of carry save adder in a pipelined 

architecture. 

 

Keywords: Multiplier, Fully Homomorphic Encryption, Fast 

Fourier Transform 

 

I. INTRODUCTION 

Very Large Scale Integration (VLSI) is the process of 

forming an integrated circuit which involves a combination of 

a large number of transistors. It thus helps in combining 

processors and memory into a single unit. Cryptography 

involves provision of security to data transmitted form a 

source to a destination. Data from the source is encrypted by 

use of an algorithm employing keys and then they are 

transmitted. On reception of data at the destination it is 

decrypted by use of the same algorithm and same or different 

key. Processing of data in its encrypted form increases the 

security level and this phenomenon is called as Fully 

Homomorphic Encryption (FHE). The multiplier designed in 

the paper is capable of operation in FHE mode. The 

multiplication operation is performed with the use of FFT 

processor. The core operation of the processor is performed 

using radix 16 and modular multiplication operation which 

enhances the system speed. Radix 16 unit comprises of two 

operations namely summing and shifting performed by carry 

save adders and shifters respectively. 

A. RADIX 16 UNIT 

The term radix is defined as the FFT decomposition 

size. In general the transform size should be power of the 

radix. In the design of FFT processor the design of radix-16 

unit is simple consisting of sum unit and shifting unit. The 

sum unit consists of a number of 14 carry-save adders that 

operate in a pipelined fashion. Carry save adder is chosen on 

comparison with the other adders that form complex adder 

circuits. Pipelined system is incorporated in order to perform 

faster computation by taking multiple inputs and providing 

instantaneous output. The shifter is used to perform left shift 

of one bit. The input as well as the output of the radix 16 unit 

consists of 16 samples each of 64 bits. The input provided at 

each stage of the summer is different only because of the 

shifting operation that takes place prior to the summing 

operation. 

                    

 
Figure: 1 Block diagram for Radix 16 unit 

B. MODULAR MULTIPLICATION 

The modular multiplication unit is an important 

sector to compute the Fast Fourier Transform in the FFT 

processor block. Modular multiplication is used to perform 

faster computation. This is done only with respect to integers. 

All operations involved in modular arithmetic are performed 
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with the usage of reminders. In the modular multiplication 

block the two inputs comprise of the output from radix-16 

block and the output of the multiplexer which is the twiddle 

factor. These factors are the coefficients used to combine 

results from previous stages to provide as input to the next 

stage. The registers used in modular multiplication block are 

32 bit registers. Both the inputs to the modular multiplication 

block consist of 64 bits. The multiplier is a pipelined structure 

which can perform multiple modular operations 

simultaneously thereby reducing time consumption. The 

modular multiplication process consists of operations such as 

segmentation, addition, shifting and subtraction followed by 

combining.  

 

 
 

Figure: 2 Block diagram for modular multiplication unit 
 

C. FFT PROCESSOR 
The multiplier design can be achieved by first 

constructing the FFT processor that helps to obtain the result 

of multiplication. The multiplication process is based on 

convolution which is performed by the FFT processor. On 

resolving carries between the digits of the convolution result 

the final product of multiplication can be obtained. 

The FFT multiplication involves an algorithm which 

has five distinct steps. In order to compute a product of X 

times Y, The numbers X and Y are expressed as sequence of 

digits followed by convolution and resolving caries. 

The algorithm can be declared on basis of five stages 

namely 

1. Decomposition-To represent A and B as a(n) and 

b(n). 

2. FFT-Computation of FFT of a(n) and b(n). 

3. Component-wise product-C[i]=FFT(A)[i]*FFT(B)[i]. 

4. IFFT-c(n)=IFFT(C). 

5. Resolve carries 

 

 

 

Figure: 3 Block diagram for FFT processor 
 

D. MULTIPLIER 

The multiplier design involves the forward and 

reverse operation of FFT processor. Output of a processor is 

provided as one of the inputs to the other processor to compute 

the inverse transform output. The output from the FFT 

processor is then processed for bandwidth resolution. This 

processing is handled by the resolve carries unit. The final 

output provides the product of the input ciphertext. 

 

II. RELATED WORK 

In[1] the concept of Software as a Service in cloud took place 

with the non existence of Fully Homomorphic Encryption 

scheme. In [2] the evolution of Fully Homomorphic 

Encryption took place. But this scheme did not suite actual 

deployment due to complexity of lattices. In [3] optimizations 

are made to develop a working implementation. In [4] the 

implementation was made on x3500 sever but remained 

impractical due to high latency. In [5] techniques are provided 

for hardware implementation using Advanced Encryption 

Standard (AES) algorithm. In [6] implementation of FFT 

processor with pipelined stages is exhibited. In [7] concept of 

shared memory architecture is explained which is used to 

reduce the memory usage. [8] and [9] describe the hardware 

implementation using different platforms. 

 

III. PROPOSED SYSTEM 

In this paper, the design of a multiplier for Fully 

Homomorphic Encryption is proposed. Here the main aim is 

to improve the security of data transmitted for processing to 

overcome the drawbacks of earlier stages of cloud computing 

[1]. To satisfy security needs Gentry put forth [2] FHE 

scheme. FHE first implementation was performed [4] on a 

GPU processor with high memory and device capabilities. 

This FHE scheme is further implemented to develop a means 

which could solve the urge for security. The core unit of the 

system is the FFT processor. This processor involves two 

main operations of summing and shifting. The main concern 
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remains in reduction of time which is achieved using the 

pipeline structure. The sum unit makes use of Carry Save 

Adder to reduce the delay by employing pipelined stages. The 

shift unit performs one bit left shift operation at every stage. 

The multiplier incorporates two Fast Fourier 

Transform processors. One processor is responsible in 

performing forward operation while the other provides input 

to the former processor in order to provide the inverse 

transform output. 

 

 
 

Figure: 4 Block diagram of multiplier for FHE 

 

The output of the FFT processor after inverse 

operation is 16x64 bits. To reduce the bandwidth consumption 

of the output the size of the output is reduced to 16x24 bits by 

a resolve carry block. The purpose of resolve carry block is is 

bandwidth resolution but taking into consideration only the 

sum units and part of the carry bits.  

 

IV. RESULTS AND DISCUSSION 

The multiplier design is simulated using Xilinx 14.2 

software. The core of multiplier design is the Fast Fourier 

Transform processor. The processor utilizes 63% of device 

specifications of Spartan 3E. 

A.RADIX 16 UNIT 

The radix 16 unit designed using two modules namely the 

sum unit and shifting unit. The sum unit is the high resolution 

unit consisting of 16 inputs in pipelined stages producing a 

single output of partial sum and shift carry. 

 
(a) 

 
(b) 

 
Fig: 5 Simulation results for sum unit of radix 16 module 

(a) Input for sum unit (b) Sum and carry outputs of sum unit. 

 

B. Modular multiplication  

This module is used to enhance the speed of FFT. The 
process involves a series of arithmetic and logical operations. 
One of the inputs to this unit is the twiddle factor. 

 

 

(a) 

 

(b) 

 

Fig: 6 Simulation results of modular multiplication unit 

(a) Status with reset 0 (b) Status with reset 1 

C. FFT PROCESSOR 

The FFT processor provides a faster means of processing 
to provide product in the ciphertext form. This processor 
makes  use of 63% use of Spartan 3E and can be made more 
efficient using Graphics Processing Unit (GPU) processor. 
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(a) 

 

(b) 

Fig: 7 Simulation results of Fast Fourier Transform 
processor 

(a) 16x64 bits input (b) 16x64 bits output 

 

D. DEVICE UTILIZATION 

The FFT processor is implemented and simulated using 
Spartan 3E device which is a part of Xilinx 14.2 software. The 
delay is very much reduced and suitable for faster processing. 
Among this utilization the major portion is occupied by radix 
16 unit which is about 32% of the device capabilities of 
Spartan 3E. 

 

 

 

Fig: 8 Device utilization of FFT processor 
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