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Abstract—An intrusion detection system (IDS) is a device or 

software application that monitors network or system activities 

for malicious activities or policy violations and produces reports 

to a management station. Some systems may attempt to stop an 

intrusion attempt but this is neither required nor expected of a 

monitoring system. Intrusion detection and prevention systems 

(IDPS) are primarily focused on identifying possible incidents, 

logging information about them, and reporting attempts. In 

addition, organizations use IDPSes for other purposes, such as 

identifying problems with security policies, documenting 

existing threats and deterring individuals from violating 

security policies. Internet services and applications have become 

an inextricable part of daily life, enabling communication and 

the management of personal information from anywhere. To 

accommodate this increase in application and data 

complexity,web services have moved to a multi-tiered design 

wherein the webserver runs the application front-end logic and 

data is outsourced to a database or file server. 

   In this paper, we present DoubleGuard, an IDS system that 

models the network behavior of user sessions across both the 

front-end web server and the back-end database. By monitoring 

both web and subsequent database requests, we are able to 

ferret out attacks that an independent IDS would not be able to 

identify. Furthermore, we quantify the limitations of any 

multi-tier IDS in terms of training sessions and functionality 

coverage. 

We implemented DoubleGuard using an Apache web server 

with MySQL and lightweight virtualization. We then collected 

and processed real-world traffic over a 15-day period of system  

deployment in both dynamic and static web applications. 

Finally,using DoubleGuard, we were able to expose a wide 

range ofattacks with 100% accuracy while maintaining 0% false 

positives for static web services and 0.6% false positives for 

dynamic web services. 

 

Index Terms—Anomaly Detection,Double Guard,Intrusion 

Detection,Multi tired Web services.  

 

I. INTRODUCTION 

Web-delivered services and applications have increased in 

both popularity and complexity over the past few years. Daily 

tasks, such as banking, travel, and social networking, are all 

done via the web. Such services typically employ a web server 

front-end that runs the application user interface logic, as well  

as a back-end server that consists of a database or file server. 

Due to their ubiquitous use for personal and/or corporate data, 

web services have always been the target of attacks. These 

attacks have recently become more diverse, as attention has 

shifted from attacking the front-end to exploiting 

vulnerabilities of the web applications in order tocorrupt the 

back-end database system(e.g., SQL injectionattacks).A 

plethora of Intrusion Detection Systems(IDS) currently 

examine network packets individually with in both the web 

server and the database system. However, there is very little 

work being performed on multi-tiered Anomaly Detection 

(AD) systems that generate models of network behavior for 

both web and database network interactions. In such 

multi-tiered architectures, the back-end database server is 

often protected behind a firewall while the web servers are 

remotely accessible over the Internet. Unfortunately, though 

they are protected from direct remote attacks, the back-end 

systems are susceptible to attacks that use web requests as a 

means to exploit the back-end. 

   To protect multi-tiered web services, Intrusion detection 

systems (IDS) have been widely used to detect known attacks 

by matching misused traffic patterns or signatures. A class of 

IDS that leverages machine learning can also detect unknown 

attacks by identifying abnormal network traffic that deviates 

from the so-called “normal” behavior previously profiled 

during the IDS training phase. Individually,the web IDS and 

the database IDS can detect abnormal network traffic sent to 

either of them. However, we found that these IDS cannot 

detect cases wherein normal traffic isused to attack the web 

server and the database server. For example, if an attacker 

with non-admin privileges can log in to a web server using 

normal-user access credentials, he/she can find a way to issue 

a privileged database query by exploiting vulnerabilities in 

the web server. Neither the web IDS nor the database IDS 

would detect this type of attack since the web IDS would 

merely see typical user login traffic and the database IDS 

would see only the normal traffic of a privileged user. This 

type of attack can be readily detected if the database IDS can 

identify that a privileged request from the web servers not 

associated with user-privileged access. Unfortunately,within 

the current multi-threaded web server architecture, it is not 

feasible to detect or profile such causal mapping between web 

server traffic and DB server traffic since traffic cannot be 
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clearly attributed to user sessions. 

We have implemented our Double Guard container 

architecture using OpenVZ, and performance testing shows 

that it has reasonable performance overhead and is practical 

for most web applications. When the request rate is moderate 

(e.g.,under 110 requests per second), there is almost no 

overhead in comparison to an unprotected vanilla system. 

Even in a worst case scenario when the server was already 

overloaded, we observed only 26% performance overhead. 

The container-based web architecture not only fosters the 

profiling of causal mapping, but it also provides an isolation 

that prevents future session-hijacking attacks. Within a 

lightweight virtualization environment, we ran many copies of 

the web server instances in different containers so that each 

one was isolated from the rest. As ephemeral containers can 

be easily instantiated and destroyed, we assigned each client 

session a dedicated container so that, even when an attacker 

may be able to compromise a single session, the damage is 

confined to the compromised session; other user sessions 

remain unaffected by it. 

To address this challenge while building a mapping model for 

dynamic web pages, we first generated an individual training 

model for the basic operations provided by the web services. 

We demonstrate that this approach works well in practice by 

using traffic from a live blog where we progres- sively 

modeled nine operations. Our results show that we were able 

to identify all attacks, covering more than 99% of the normal 

traffic as the training model is refined. 

   

II. RELATED WORK 

A network Intrusion Detection System (IDS) can be classi- 

fied into two types: anomaly detection and misuse detection. 

Anomaly detection first requires the IDS to define and char- 

acterize the correct and acceptable static form and dynamic 

behavior of the system, which can then be used to detect 

abnormal changes or anomalous behaviors. The boundary 

between acceptable and anomalous forms of stored code and 

data is precisely definable. Behavior models are built by 

performing a statistical analysis on historical data or by using 

rule-based approaches to specify behavior patterns. An 

anomaly detector then compares actual usage patterns against 

established models to identify abnormal events. Our detection 

approach belongs to anomaly detection,and we depend on a 

training phase to build the correct model.As some legitimate 

updates may cause model drift, there area number of 

approaches that are trying to solve this problem. Our 

detection may run into the same problem; insuch a case, our 

model should be retrained for each shift. 

   Intrusion alerts correlation provides a collection of 

components that transform intrusion detection sensor alerts 

into succinct intrusion reports in order to reduce the number 

of replicated alerts, false positives, and non-relevant 

positives.It also fuses the alerts from different levels 

describing a single attack, with the goal of producing a 

succinct overview of security-related activity on the network. 

It focuses primarily on abstracting the low-level sensor alerts 

and providing compound, logical, high-level alert events to 

the users. DoubleGuard differs from this type of approach that 

correlates alerts from independent IDSes. Rather, 

DoubleGuard operates on multiple feeds of network traffic 

using a single IDS that looks across sessions to produce an 

alert without correlating or summarizing the alerts produced 

by other independent IDSs. 

   These softwares, such as Green SQL , work as a reverse 

proxy for database connections. Instead of connecting to a 

database server, web applications will first connect to a 

database firewall. SQL queries are analyzed; if they’re 

deemed safe, they are then forwarded to the back-end 

database server.The system proposed in  composes both web 

IDS and database IDS to achieve more accurate detection, and 

it also uses a reverse HTTP proxy to maintain a reduced level 

of service in the presence of false positives. However, we 

found that certain types of attack utilize normal traffics and 

cannot be detected by either the web IDS or the database IDS. 

In such cases, there would be no alerts to correlate.Some 

previous approaches have detected intrusions or 

vulnerabilities by statically analyzing the source code or 

executables.Others dynamically track the information flow to 

understand taint propagations and detect intrusions. In 

DoubleGuard, the new container-basedweb server 

architecture enables us to separate the different information 

flows by each session. This provides a means  of tracking the 

information flow from the web server to the database server 

for each session. Our approach also does not require us to 

analyze the source code or know the applicationlogic. For the 

static web page, our DoubleGuard approach doesnot require 

application logic for building a model. However, as we will 

discuss, although we do not require the full application logic 

for dynamic web services, we do need to know the basic user 

operations in order to model normal behavior. 

   Virtualization is used to isolate objects and enhance security 

performance. Full virtualization and para-virtualization are 

not the only approaches being taken. An alternative is a 

lightweight virtualization, such as OpenVZ, Parallels 

Virtuozzo, or Linux-VServer. In general, these are based on 

some sort of container concept. With containers, a group of 

processes still appears to have its own dedicated system, yetit 

is running in an isolated environment. On the other 

hand,lightweight containers can have considerable 

performance advantages over full virtualization or 

para-virtualization. Thousands of containers can run on a 

single physical host. There are also some desktop systems  

that use lightweight virtualization to isolate different 

application instances. Such virtualization techniques are 

commonly used for isolation and containment of attacks. 

However, in our DoubleGuard, we utilized the container ID to 

separate session traffic as a wayof extracting and identifying 

causal relationships between web server requests and 

database query events. 

    

III. THREAT MODEL & SYSTEM ARCHITECTURE 

We initially set up our threat model to include our assump- 
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tions and the types of attacks we are aiming to protect 

against.We assume that both the web and the database servers 

are vulnerable. Attacks are network-borne and come from the 

web clients; they can launch application-layer attacks to 

compromise the web servers they are connecting to. The 

attackers canbypass the web server to directly attack the 

database server. We assume that the attacks can neither be 

detected nor prevented by the current web server IDS, that 

attackers may take over the web server after the attack, and 

that afterwards they can obtain full control of the web server 

to launch subsequent attacks. For example, the attackers could 

modify the application logic of the web applications, 

eavesdrop or hijack other users’ web requests, or intercept 

and modify the database queries to steal sensitive data beyond 

their privileges. 

   On the other hand, at the database end, we assume that the 

database server will not be completely taken over by the 

attackers. Attackers may strike the database server through  

the web server or, more directly, by submitting SQL queries, 

they may obtain and pollute sensitive data within the database. 

A.Architecture and confinement: 

  

 
 

Fig 1: Classic 3-tier Model. The web server acts as the front-end, 
with the file and database servers as the content storage back-end. 

 

 

 

 
Fig 2: Web server instances running in containers 

 

All network traffic, from both legitimate users and adver- 

saries, is received intermixed at the same web server. If an  

attacker compromises the web server, he/she can potentially 

affect all future sessions (i.e., session hijacking). Assigning 

each session to a dedicated web server is not a realistic option, 

as it will deplete the web server resources. To achieve similar 

confinement while maintaining a low performance and 

resource overhead, we use lightweight virtualization. 

   In our design, we make use of lightweight process 

containers, referred to as “containers,” as ephemeral, 

disposable servers for client sessions. It is possible to 

initialize thousands of containers on a single physical 

machine, and these virtualized containers can be discarded, 

reverted, or quickly reinitialized to serve new sessions. A 

single physical web server runs many containers, each one an 

exact copy of the original web server. Our approach 

dynamically generates new containers and recycles used ones. 

As a result, a single physical server can run continuously and 

serve all web requests.However, from a logical perspective, 

each session is assigned to a dedicated web server and 

isolated from other sessions.Since we initialize each 

virtualized container using a read-only clean template, we can 

guarantee that each session will be served with a clean web 

server instance at initialization.We choose to separate 

communications at the session level so that a single user 

always deals with the same web server. Sessions can represent 

different users to some extent, and we expect the 

communication of a single user to go to the same dedicated 

web server, thereby allowing us to identify suspect behavior 

by both session and user. If we detect abnormal behavior in a 

session, we will treat all traffic within this session as tainted. If 

an attacker compromises a vanilla web server, other sessions’ 

communications can also be hijacked. In our system,an 

attacker can only stay within the web server containers that 

he/she is connected to, with no knowledge of the existence of 

other session communications. We can thus ensure that 

legitimate sessions will not be compromised directly by an 

attacker. 

   Figure 1 illustrates the classic 3-tier model. At the database 

side, we are unable to tell which transaction corresponds to 

which client request. The communication between the web 

server and the database server is not separated, and we can 

hardly understand the relationships among them. Figure 2 

depicts how communications are categorized as sessions and 

how database transactions can be related to a corresponding 

session. According to Figure 1, if Client 2 is malicious and 

takes over the web server, all subsequent database 

transactions become suspect, as well as the response to the 

client. By contrast, according to Figure 2, Client 2 will only 

compromise the VE 2, and the corresponding database 

transaction set T2 will be the only affected section of data 

within the database. 

 

    B.Building the Normality Model: 

 

          This container-based and session-separated web server 

architecture not only enhances the security performances but 

also provides us with the isolated information flows that are 

separated in each container session. It allows us to identify 

themapping between the web server requests and the 

subsequent DB queries, and to utilize such a mapping model 

to detect abnormal behaviors on a session/client level. In 

typical 3-tiered web server architecture, the web server 

receives HTTP requests from user clients and then issues SQL 

queries to the database server to retrieve and update data. 

These SQL queries are causally dependent on the web request 

hitting the web server. We want to model such causal 

mapping relationships of all legitimate traffic so as to detect 

abnormal/attack traffic. 

 

      



ISSN (ONLINE): 2454-9762 
ISSN (PRINT): 2454-9762 

Available online at www.ijarmate.com  
                         
                             

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering   
(IJARMATE) Vol. IV, Issue VI, June 2018 

 

                                                                  All Rights Reserved © 2018 IJARMATE   11 

 

 

 

    C.Attack Scenarios: 

 

            Our system is effective at capturing the following 

types of attacks: 

Privilege Escalation Attack: Let’s assume that the website 

serves both regular users and administrators. For a regular 

user,the web request ru will trigger the set of SQL queries Qu 

; for an administrator, the request ra will trigger the set of 

admin level queries Qa . Now suppose that an attacker logs 

into the web server as a normal user, upgrades his/her 

privileges, and triggers admin queries so as to obtain an 

administrator’s data.This attack can never be detected by 

either the web server IDS or the database IDS since both ru 

and Qa are legitimate requests and queries. Our approach, 

however, can detect this type of attack since the DB query Qa  

 
 

  Fig.3: Privilege Escalation Attack 

 

 

 
    Fig .4: Hijack Future Session Attack 

 

does not match therequest ru , according to our mapping 

model. Figure 3 shows how a normal user may use admin 

queries to obtain privileged information. 

Hijack Future Session Attack: This class of attacks is 

mainly aimed at the web server side. An attacker usually takes 

over the web server and therefore hijacks all subsequent 

legitimate user sessions to launch attacks. For instance, by 

hijacking other user sessions, the attacker can eavesdrop, send 

spoofed replies, 

and/or drop user requests. A session hijacking attack can be 

further categorized as a Spoofing/Man-in-the-Middle attack, 

an Exfiltration Attack, a Denial-of-Service/Packet Drop 

attack, or a Replay attack. 

   Figure 4 illustrates a scenario wherein a compromised web 

server can harm all the Hijack Future Sessions by not 

generating any DB queries for normal user requests. 

According to the mapping model, the web request should 

invoke some database queries (e.g., a Deterministic Mapping 

(section IV-A)), then the abnormal situation can be detected. 

However, neither a conventional web server IDS nor a 

database IDS can detect such an attack by itself. 

  

 
                  Fig 5: Injection Attack. 
 

  

      
Fig.6:DB Query with out causing Web requests 

 

Direct DB attack: It is possible for an attacker to bypass the 

web server or firewalls and connect directly to the database. 

An attacker could also have already taken over the web server 

and be submitting such queries from the web server without 

sending web requests. Without matched web requests for such 

queries, a web server IDS could detect neither. Furthermore, 

if these DB queries were within the set of allowed queries, 

then the database IDS itself would not detect it either. 

However,this type of attack can be caught with our approach 

since wecannot match any web requests with these queries. 

Figure 6  illustrates the scenario wherein an attacker bypasses 

the webserver to directly query the database. 

    

   D.Double Guard limitations: 

 

          In this section, we discuss the operational and detection 

limitations of DoubleGuard. 

Vulnerabilities Due to Improper Input Processing: Cross 

Site Scripting (XSS) is a typical attack method wherein 

attackers embed malicious client scripts via legitimate user 

inputs.In DoubleGuard, all of the user input values are 

normalized so as to build a mapping model based on the 

structures of HTTP requests and DB queries. Once the 

malicious user inputs are normalized, DoubleGuard cannot 

detect attacks hidden in the values. These attacks can occur 

even without the databases. DoubleGuard offers a 

complementary approach to those research approaches of 

detecting web attacks based on the characterization of input 

values. 

Possibility of Evading DoubleGuard: 

   Our assumption is that an attacker can obtain “full control” 

of the web server thread that she connects to. That is, the 

attacker can only take over the web server instance running in 

its isolated container. Our architecture ensures that every 

client be defined by the IP address and port container  pair, 

which is unique for each session. Therefore, hijacking    an 

existing container is not possible because traffic for    other 

sessions is never directed to an occupied container.    If this 

were not the case, our architecture would have been  similar to 

the conventional one where a single web server runs  many 

different processes. queries. However, this significantly 

increases the efforts for the attackers to launch successful 

attacks. In addition, users with non-admin permissions can 

cause minimal (and sometimes zero) damage to the rest of the 



ISSN (ONLINE): 2454-9762 
ISSN (PRINT): 2454-9762 

Available online at www.ijarmate.com  
                         
                             

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering   
(IJARMATE) Vol. IV, Issue VI, June 2018 

 

                                                                  All Rights Reserved © 2018 IJARMATE   12 

 

 

 

system and therefore they have limited incentives to launch 

such attacks.  

 

 Distributed DoS: DoubleGuard is not designed to mitigate 

DDoS attacks. These attacks can also occur in the server 

architecture without the back-end database. 

     IV.MODELING DETERMINISTIC  MAPPING AND PATTERNS 

            Due to their diverse functionality, different web 

applicationsexhibit different characteristics. Many websites 

serve onlystatic content, which is updated and often managed  

 Finally, in some cases, the web server will have some 

periodical tasks that trigger database queries without any web 

requests driving them. The challenge is to take all of these 

cases into account and build the normality model in such a 

way that we can cover all of them. 

   As illustrated in Figure 2, all communications from the 

clients to the database are separated by a session. We assign 

each session with a unique session ID. DoubleGuard 

normalizes the variable values in both HTTP requests and 

database queries, preserving the structures of the requests and 

queries. To achieve this, DoubleGuard substitutes the actual 

values of the variables with symbolic values. Figure15 depicts 

an example of the normalizations of the captured requests and 

queries. 

   Following this step, session i will have a set of requests, 

which is Ri , as well as a set of queries, which is Qi . If the total 

number of sessions of the training phase is N , then we have 

the set of total web requests REQ and the set of total SQL 

queries SQL across all sessions. Each single web request rm ∈ 

REQ may also appear several times in different Ri where i can 

be 1, 2 ... N . The same holds true for qn ∈ SQL. 

 

     A.Inferring Mapping Relations 
            

           If several SQL queries, such as qn , qp , are always 

found within one HTTP request of rm , then we can usually 

have an exact mapping of rm → {qn , qp }. However, this is 

not always the case. Some requests will result in different 

queries based on the request parameters and the state of the 

web server. For example, for web request rm , the invoked 

query set can sometimes be {qn ,qp } or, at other times, {qp } 

or {qq ,qn ,qs }. 

   The probabilities for these queries are usually not the same. 

For 100 requests of rm , the set is at {qn ,qp } 75 times, at {qp 

} 20 times, and at {qq ,qn ,qs } only 5 times. In such a case, we 

can find the mapping of rm → qp is 100%, with a rm → qn 

possibility of 80% and a rm → qs occurrence at 5% of all 

cases. We define this first type of mapping as deterministic 

and the latter ones as non-deterministic. 

   Below, we classify the four possible mapping patterns. 

Since the request is at the origin of the data flow, we treat each 

request as the mapping source. In other words, the mappings 

in the model are always in the form of one request to a query 

set rm → Qn . The possible mapping patterns are as in Figure 

7 

Deterministic Mapping: This is the most common and 

perfectly-matched pattern. That is to say that web request rm 

appears in all traffic with the SQL queries set Qn . The 

mapping pattern is then rm → Qn (Qn = ∅). For any session in 

the testing phase with the request rm , the absence of a query 

set Qn matching the request indicates a possible intrusion.On 

the other hand, if Qn is present in the session traffic without 

the corresponding rm , this may also be the sign of an 

intrusion.In static websites, this type of mapping comprises 

the majority of cases since the same results should be returned 

for each time a user visits the same link. 

Empty Query Set: In special cases, the SQL query set may be 

the empty set. This implies that the web request neither causes 

nor generates any database queries. For example, when a web 

request for retrieving an image GIF file from the same web 

server is made, a mapping relationship does not exist because 

only the web requests are observed. This type of mapping is 

called rm → ∅. During the testing phase, we keep these web 

requests together in the set EQS 

 
        Fig 7: Overall representation of design patterns 

 

. 

No Matched Request: In some cases, the web server may 

periodically submit queries to the database server in order to 

conduct some scheduled tasks, such as cron jobs for archiving 

or backup. This is not driven by any web request, similar to 

the reverse case of the Empty Query Set mapping pattern. 

These queries cannot match up with any web requests, and we 

keep these unmatched queries in a set N M R. During the 

testing phase, any query within set N M R is considered 

legitimate.The size of N M R depends on web server logic, 

but it is typically small. 

Non-deterministic Mapping: The same web request may 

result in different SQL query sets based on input parameters 

or the status of the web page at the time the web request is 

received. In fact, these different SQL query sets do not appear 

randomly, and there exists a candidate pool of query sets (e.g. 

{Qn , Qp , Qq ...}). Each time that the same type of web 

request arrives, it always matches up with one (and only one) 

of the query sets in the pool. The mapping pattern is rm → Qi 

(Qi ∈ {Qn , Qp , Qq ...}). Therefore, it is difficult to identify 

traffic that matches this pattern. This happens only within 

dynamic websites, such as blogs or forum sites. 

   Figure 7 illustrates all four mapping patterns. 

 

   B.Modeling for Static Websites: 

 

  In the case of a static website, the non-deterministic mapping 

does not exist as there are no available input variables or 
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states for static content. We can easily classify the traffic 

collected by sensors into three patterns in order to build the 

mapping model. As the traffic is already separated by session, 

we begin by iterating all of the sessions from 1 to N . For each 

rm ∈ REQ, we maintain a set ARm to record the IDs of  

sessions in which rm appears. The same holds for the database 

queries; we have a set AQs for each qs ∈ SQL to record all the 

session IDs. To produce the training model, we leverage the 

fact that the same mapping pattern appears many times across 

different sessions. For each ARm , we search for the AQs that 

equals the ARm . When ARm = AQs , this indicates that every 

time rm appears in a session then qs will also appear in the 

same session, and vice versa. 

    Given enough samples, we can confidently extract a 

mapping pattern rm → qs . Here, we use a threshold value t so 

that if the mapping appears in more than t sessions (e.g., the 

cardinality of ARm or AQs is greater than t), then a mapping 

pattern has been found. If such a pattern appears less than t  

times, this indicates that the number of training sessions is 

insufficient. In such a case, scheduling more training sessions 

is recommended before the model is built, but these patterns 

can also be ignored since they may be incorrect mappings. In 

our experiments, we set t to 3, and the results demonstrate that 

the requirement was easily satisfied for a static website with a 

relatively low number of training sessions 

 
 
Fig .8:deterministic mapping using  session ID of container (VE) 

 

   Figure 8 illustrates the use of the session ID provided by 

the container (VE) in order to build the deterministic mapping 

between http requests and the database requests. The request 

rA has the set ARA of {2,4,5}, which equals to AQY . 

Therefore, we can decide a Deterministic Mapping rA → qY . 

We developed an algorithm that takes the input of training 

dataset and builds the mapping model for static websites. For 

each unique HTTP request and database query, the algorithm 

assigns a hash table entry, the key of the entry is the request or 

query itself, and the value of the hash entry is AR for the 

request or AQ for the query respectively. The algorithm 

generates the mapping model by considering all three 

mapping patterns that would happen in static websites. 

 

     C.Testing for static websites 

 

             Once the normality model is generated, it can be 

employed for training and detection of abnormal behavior. 

During the testing phase, each session is compared to the 

normality model. We begin with each distinct web request in 

the session and, since each request will have only one 

mapping rule in the model, we simply compare the request 

with that rule. The testing phase algorithm is as follows: 

   1) If the rule for the request is Deterministic Mapping r 

       → Q (Q = ∅), we test whether Q is a subset of a query 

       set of the session. If so, this request is valid, and we 

       mark the queries in Q. Otherwise, a violation is detected 

       and considered to be abnormal, and the session will be 

       marked as suspicious. 

   2) If the rule is Empty Query Set r → ∅, then the request 

       is not considered to be abnormal, and we do not mark 

       any database queries. No intrusion will be reported. 

   3) For the remaining unmarked database queries, we check 

       to see if they are in the set N M R. If so, we mark the 

       query as such. 

   4) Any untested web request or unmarked database query 

       is considered to be abnormal. If either exists within a 

       session, then that session will be marked as suspicious. 

In our implementation and experimenting of the static test- 

ing website, the mapping model contained the Deterministic 

Mappings and Empty Query Set patterns without the No 

Matched Request pattern. This is commonly the case for 

static websites. As expected, this is also demonstrated in our 

experiments in section V. 

    

   D.Modeling of  Dynamic Patterns 

      

           In contrast to static web pages, dynamic web pages 

allow users to generate the same web query with different 

parameters. Additionally, dynamic pages often use POST 

rather than GET methods to commit user inputs. Based on the 

web server’s application logic, different inputs would cause 

different database queries. For example, to post a comment to 

a blog article, the web server would first query the database to 

see the existing comments. If the user’s comment differs from 

previous comments, then the web server would automatically 

generate a set of new queries to insert the new post into the 

back-end database. Otherwise, the web server would reject 

the input in order to prevent duplicated comments from being 

posted (i.e., no corresponding SQL query would be issued.) In 

such cases, even assigning the same parameter values would 

cause different set of queries, depending on the previous state 

of the website. Likewise, this non-deterministic mapping case 

(i.e., one-to-many mapping) happens even after we normalize 

all parameter values to extract the structures of the web 

requests and queries. Since the mapping can appear 

differently in different cases, it becomes difficult to identify 

all of the one-to-many mapping patterns for each web request. 

Moreover,when different operations occasionally overlap at 

their possible query set, it becomes even harder for us to 

extract the one-to-many mapping for each operation by 

comparing matched requests and queries across the sessions. 

    

      E.Detection  of  Dynamic Websites 

 

    Once we build the separate single operation models, they 

can be used to detect abnormal sessions. In the testing phase, 
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traffic captured in each session is compared with the model. 

We also iterate each distinct web request in the session. For 

each request, we determine all of the operation models that 

this request belongs to, since one request may now appear in 

several models. We then take the entire corresponding query 

sets in these models to form the set CQS. For the testing 

session i, the set of DB queries Qi should be a subset of the 

CQS. Otherwise, we would find some unmatched queries. For 

the web requests in Ri , each should either match at least one 

request in the operation model or be in the set EQS. If any 

unmatched web request remains, this indicates that the session 

has violated the mapping model. 

    

  Fig.9: Overall architecture of Prototype 
 

                    V.PERFORMANCE  EVALUATION 

   We implemented a prototype of DoubleGuard using a web 

server with a back-end DB. We also set up two testing 

websites, one static and the other dynamic. To evaluate the 

detection results for our system, we analyzed four classes of 

attacks, as discussed in Section III, and measured the false 

positive rate for each of the two websites. 

 

A. Implementation 

In our prototype, we chose to assign each user session into a 

different container; however this was a design decision. For 

instance, we can assign a new container per each new IP 

address of the client. In our implementation, containers were 

recycled based on events or when sessions time out. We were 

able to use the same session tracking mechanisms as 

implemented by the Apache server (cookies, mod usertrack, 

etc) because lightweight virtualization containers do not 

impose high memory and storage overhead. Thus, we could 

maintain a large number of parallel-running Apache instances 

similar to the Apache threads that the server would maintain 

in the scenario without containers. If a session timed out, the 

Apache instance was terminated along with its container. In 

our prototype implementation, we used a 60-minute timeout 

due to resource constraints of our test server. However, this 

was not a limitation and could be removed for a production 

environment where long-running processes are required. 

Figure 9 depicts the architecture and session assignment of 

our prototype, where the host web server works as a 

dispatcher. 

   Initially, we deployed a static testing website using the 

Joomla Content Management System. In this static website, 

updates can only be made via the back-end management 

interface. This was deployed as part of our center website in 

production environment and served 52 unique web pages. For 

our analysis, we collected real traffic to this website for more 

than two weeks and obtained 1172 user sessions. 

   To test our system in a dynamic website scenario, we set up 

a dynamic Blog using the Wordpress  blogging software. In 

our deployment, site visitors were allowed to read, post, and 

comment on articles. All models for the received front-end 

and back-end traffic were generated using this data. 

        

 

 
   
    Fig  10: Performance evaluation using http load. The overhead is 

between 10.3% to 26.2% 

 

 B.Container Overhead 

 

    One of the primary concerns for a security system is its 

performance overhead in terms of latency. In our case, even 

though the containers can start within seconds, generating a 

container on-the-fly to serve a new session will increase the 

response time heavily. To alleviate this, we created a pool of 

web server containers for the forthcoming sessions akin to 

what Apache does with its threads. As sessions continued to 

grow, our system dynamically instantiated new containers. 

Upon completion of a session, we recycled these containers 

by reverting them to their initial clean states. 

     When we put the parameters at 3 and 10 seconds, the 

overhead was about 23%. We also tested using autobench, 

which is a Perl script wrapper around httperf. It can 

automatically compare the performance of two websites. We 

tested demanding rate ranging from 10 to 190, which means 

that a series of tests started at 10 requests per second and 

increased by 20 requests per second until 190 requests per 

second were being requested;any responses that took longer 

than 10 seconds to arrive were counted as errors. We 

compared the actual requests rates and the replay rates for 

bothservers 

Figure11 shows that when the rate was less than 110 

concurrent sessions per second, both servers could handle 

requests fairly well. Beyond that point, the rates in the 

container based server showed a drop: for 150 sessions per 
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second, the maximum overhead reflected in the reply rate was 

around 21% (rate of 130). Notice that 21% was the worst case 

scenario for this experiment, which is fairly similar to 26.2% 

in the http load experiment. When the server was not 

overloaded,and for our server this was represented by a rate of 

less than110 concurrent sessions per second, the performance 

overhead was negligible. 

 
 
 Fig .11. Performance evaluation using auto bench 

  

    C.Static Web page model  in training  phase 

 

For the static website, we used the algorithm in Section IV-B 

to build the mapping model, and we found that only the 

Deterministic Mapping and the Empty Query Set Mapping 

patterns appear in the training sessions. We expected that the 

No Matched Request pattern would appear if the web 

application had a cron job that contacts back-end database 

server; however, our testing website did not have such a cron 

job. We first collected 338 real user sessions for a training 

dataset before making the website public so that there was no 

attack during the training phase. 

    

 

 
                  Fig  12. Time of  starting new container   

 

 

correctly build the entire model. Based on this training 

process accuracy graph, we can determine a proper time to 

stop the training. 

 

     D.Dynamic modeling and detection dates 

 

  We also conducted model building experiments for the 

dynamic blog website. We obtained 329 real user traffic 

sessions from the blog under daily workloads.  

 

 
    Fig 13.False positives vs Training time in static website 

 

 

 

 
   The model building for a dynamic website is different from 

that for a static one. We first manually listed 9 common 

operations of the website, which are presented in Table I. To 

build a model for each operation, we used the automatic tool 

Selenium to generate traffic. 

 

    E.Attack Detection 

  

   Once the model is built, it can be used to detect malicious 

sessions. For our static website testing, we used the 

production website, which has regular visits of around 50-100 

sessions per day. We collected regular traffic for this 

production site, which totaled 1172 sessions. 

   

1) Privilege Escalation Attack: For Privilege Escalation 

Attacks, according to our previous discussion, the attacker 

visits the website as a normal user aiming to compromise the 

web server process or exploit vulnerabilities to bypass 

authentication. At that point, the attacker issues a set of 

privileged (e.g., admin-level) DB queries to retrieve sensitive 

information. We log and process both legitimate web requests 

and database queries in the session traffic, but there are no 

mappings among them. during the training 

phase,DoubleGuard can capture the unmatched cases 
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      Fig 14.ROC curves for dynamic  models 

 

 

   2) Hijack Future Session Attack (Web Server aimed attack): 

Out of the four classes of attacks we discuss, session hijacking  

is the most common, as there are many examples that exploit 

the vulnerabilities of Apache, IIS, PHP, ASP, and cgi, to 

name a few. Most of these attacks manipulate the HTTP 

requests to take over the web server. We first ran Nikto. 

  

3) Injection Attack: Here we describe how our approach can 

detect the SQL injection attacks. To illustrate with an 

example, we wrote a simple PHP login page that was 

vulnerable to SQL injection attack. As we used a legitimate 

username and password to successfully log in, we could 

include the HTTP request in the second line of Figure 15      4) 

Direct DB attack: If any attacker launches this type of attack, 

it will easily be identified by our approach. First of all, 

according to our mapping model, DB queries will not have 

any matching web requests during this type of attack. On the 

other hand, as this traffic will not go through any containers, it 

will be captured as it appears to differ from the legitimate 

traffic that goes through the containers. 

 
    

  

VI.CONCLUSION 

We presented an intrusion detection system that builds 

models of normal behavior for multi-tiered web applications 

from both front-end web (HTTP) requests and back-end 

database (SQL) queries. Unlike previous approaches that 

correlated or summarized alerts generated by independent 

IDSes, DoubleGuard forms a container-based IDS with 

multiple input streams to produce alerts. Such correlation of 

different data streams provides a better characterization of the 

system for anomaly detection because the intrusion sensor has 

a more precise normality model that detects a wider range of 

threats. 

   We achieved this by isolating the flow of information from 

each web server session with a lightweight virtualization. 

Furthermore, we quantified the detection accuracy of our 

approach when we attempted to model static and dynamic 

web requests with the back-end file system and database 

queries.For static websites, we built a well-correlated model, 

which our experiments proved to be effective at detecting 

different types of attacks. Moreover, we showed that this held 

true for dynamic requests where both retrieval of information 

and updates to the back-end database occur using the 

web-server front end. When we deployed our prototype on a 

system that employed Apache web server, a blog application 

and a MySQL back-end, DoubleGuard was able to identify a 

wide range of attacks with minimal false positives. As 

expected, the number of false positives depended on the size 

and coverage of the training sessions we used. Finally, for 

dynamic web applications, we reduced the false positives to 

0.6%..  
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