
ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
(IJARMATE) Vol. IV, Issue VI, June 2018

 All Rights Reserved © 2018 IJARMATE 8

An Approach for the Implementation of Double Guard method

for detecting the IDs in Web applications

Y.Md.Riyazuddin
1
, G.Susmithavalli

2
, G.Victor Daniel

3

Asst Prof, Department of IT, GITAM, Hyderabad, India 1

Prof, Department of CSE, MLRIT, Hyderabad, India
 2

Asst Prof, Department of IT, GITAM, Hyderabad, India
 3

Abstract—An intrusion detection system (IDS) is a device or

software application that monitors network or system activities

for malicious activities or policy violations and produces reports

to a management station. Some systems may attempt to stop an

intrusion attempt but this is neither required nor expected of a

monitoring system. Intrusion detection and prevention systems

(IDPS) are primarily focused on identifying possible incidents,

logging information about them, and reporting attempts. In

addition, organizations use IDPSes for other purposes, such as

identifying problems with security policies, documenting

existing threats and deterring individuals from violating

security policies. Internet services and applications have become

an inextricable part of daily life, enabling communication and

the management of personal information from anywhere. To

accommodate this increase in application and data

complexity,web services have moved to a multi-tiered design

wherein the webserver runs the application front-end logic and

data is outsourced to a database or file server.

 In this paper, we present DoubleGuard, an IDS system that

models the network behavior of user sessions across both the

front-end web server and the back-end database. By monitoring

both web and subsequent database requests, we are able to

ferret out attacks that an independent IDS would not be able to

identify. Furthermore, we quantify the limitations of any

multi-tier IDS in terms of training sessions and functionality

coverage.

We implemented DoubleGuard using an Apache web server

with MySQL and lightweight virtualization. We then collected

and processed real-world traffic over a 15-day period of system

deployment in both dynamic and static web applications.

Finally,using DoubleGuard, we were able to expose a wide

range ofattacks with 100% accuracy while maintaining 0% false

positives for static web services and 0.6% false positives for

dynamic web services.

Index Terms—Anomaly Detection,Double Guard,Intrusion

Detection,Multi tired Web services.

I. INTRODUCTION

Web-delivered services and applications have increased in

both popularity and complexity over the past few years. Daily

tasks, such as banking, travel, and social networking, are all

done via the web. Such services typically employ a web server

front-end that runs the application user interface logic, as well

as a back-end server that consists of a database or file server.

Due to their ubiquitous use for personal and/or corporate data,

web services have always been the target of attacks. These

attacks have recently become more diverse, as attention has

shifted from attacking the front-end to exploiting

vulnerabilities of the web applications in order tocorrupt the

back-end database system(e.g., SQL injectionattacks).A

plethora of Intrusion Detection Systems(IDS) currently

examine network packets individually with in both the web

server and the database system. However, there is very little

work being performed on multi-tiered Anomaly Detection

(AD) systems that generate models of network behavior for

both web and database network interactions. In such

multi-tiered architectures, the back-end database server is

often protected behind a firewall while the web servers are

remotely accessible over the Internet. Unfortunately, though

they are protected from direct remote attacks, the back-end

systems are susceptible to attacks that use web requests as a

means to exploit the back-end.

 To protect multi-tiered web services, Intrusion detection

systems (IDS) have been widely used to detect known attacks

by matching misused traffic patterns or signatures. A class of

IDS that leverages machine learning can also detect unknown

attacks by identifying abnormal network traffic that deviates

from the so-called “normal” behavior previously profiled

during the IDS training phase. Individually,the web IDS and

the database IDS can detect abnormal network traffic sent to

either of them. However, we found that these IDS cannot

detect cases wherein normal traffic isused to attack the web

server and the database server. For example, if an attacker

with non-admin privileges can log in to a web server using

normal-user access credentials, he/she can find a way to issue

a privileged database query by exploiting vulnerabilities in

the web server. Neither the web IDS nor the database IDS

would detect this type of attack since the web IDS would

merely see typical user login traffic and the database IDS

would see only the normal traffic of a privileged user. This

type of attack can be readily detected if the database IDS can

identify that a privileged request from the web servers not

associated with user-privileged access. Unfortunately,within

the current multi-threaded web server architecture, it is not

feasible to detect or profile such causal mapping between web

server traffic and DB server traffic since traffic cannot be

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
(IJARMATE) Vol. IV, Issue VI, June 2018

 All Rights Reserved © 2018 IJARMATE 9

clearly attributed to user sessions.

We have implemented our Double Guard container

architecture using OpenVZ, and performance testing shows

that it has reasonable performance overhead and is practical

for most web applications. When the request rate is moderate

(e.g.,under 110 requests per second), there is almost no

overhead in comparison to an unprotected vanilla system.

Even in a worst case scenario when the server was already

overloaded, we observed only 26% performance overhead.

The container-based web architecture not only fosters the

profiling of causal mapping, but it also provides an isolation

that prevents future session-hijacking attacks. Within a

lightweight virtualization environment, we ran many copies of

the web server instances in different containers so that each

one was isolated from the rest. As ephemeral containers can

be easily instantiated and destroyed, we assigned each client

session a dedicated container so that, even when an attacker

may be able to compromise a single session, the damage is

confined to the compromised session; other user sessions

remain unaffected by it.

To address this challenge while building a mapping model for

dynamic web pages, we first generated an individual training

model for the basic operations provided by the web services.

We demonstrate that this approach works well in practice by

using traffic from a live blog where we progres- sively

modeled nine operations. Our results show that we were able

to identify all attacks, covering more than 99% of the normal

traffic as the training model is refined.

II. RELATED WORK

A network Intrusion Detection System (IDS) can be classi-

fied into two types: anomaly detection and misuse detection.

Anomaly detection first requires the IDS to define and char-

acterize the correct and acceptable static form and dynamic

behavior of the system, which can then be used to detect

abnormal changes or anomalous behaviors. The boundary

between acceptable and anomalous forms of stored code and

data is precisely definable. Behavior models are built by

performing a statistical analysis on historical data or by using

rule-based approaches to specify behavior patterns. An

anomaly detector then compares actual usage patterns against

established models to identify abnormal events. Our detection

approach belongs to anomaly detection,and we depend on a

training phase to build the correct model.As some legitimate

updates may cause model drift, there area number of

approaches that are trying to solve this problem. Our

detection may run into the same problem; insuch a case, our

model should be retrained for each shift.

 Intrusion alerts correlation provides a collection of

components that transform intrusion detection sensor alerts

into succinct intrusion reports in order to reduce the number

of replicated alerts, false positives, and non-relevant

positives.It also fuses the alerts from different levels

describing a single attack, with the goal of producing a

succinct overview of security-related activity on the network.

It focuses primarily on abstracting the low-level sensor alerts

and providing compound, logical, high-level alert events to

the users. DoubleGuard differs from this type of approach that

correlates alerts from independent IDSes. Rather,

DoubleGuard operates on multiple feeds of network traffic

using a single IDS that looks across sessions to produce an

alert without correlating or summarizing the alerts produced

by other independent IDSs.

 These softwares, such as Green SQL , work as a reverse

proxy for database connections. Instead of connecting to a

database server, web applications will first connect to a

database firewall. SQL queries are analyzed; if they’re

deemed safe, they are then forwarded to the back-end

database server.The system proposed in composes both web

IDS and database IDS to achieve more accurate detection, and

it also uses a reverse HTTP proxy to maintain a reduced level

of service in the presence of false positives. However, we

found that certain types of attack utilize normal traffics and

cannot be detected by either the web IDS or the database IDS.

In such cases, there would be no alerts to correlate.Some

previous approaches have detected intrusions or

vulnerabilities by statically analyzing the source code or

executables.Others dynamically track the information flow to

understand taint propagations and detect intrusions. In

DoubleGuard, the new container-basedweb server

architecture enables us to separate the different information

flows by each session. This provides a means of tracking the

information flow from the web server to the database server

for each session. Our approach also does not require us to

analyze the source code or know the applicationlogic. For the

static web page, our DoubleGuard approach doesnot require

application logic for building a model. However, as we will

discuss, although we do not require the full application logic

for dynamic web services, we do need to know the basic user

operations in order to model normal behavior.

 Virtualization is used to isolate objects and enhance security

performance. Full virtualization and para-virtualization are

not the only approaches being taken. An alternative is a

lightweight virtualization, such as OpenVZ, Parallels

Virtuozzo, or Linux-VServer. In general, these are based on

some sort of container concept. With containers, a group of

processes still appears to have its own dedicated system, yetit

is running in an isolated environment. On the other

hand,lightweight containers can have considerable

performance advantages over full virtualization or

para-virtualization. Thousands of containers can run on a

single physical host. There are also some desktop systems

that use lightweight virtualization to isolate different

application instances. Such virtualization techniques are

commonly used for isolation and containment of attacks.

However, in our DoubleGuard, we utilized the container ID to

separate session traffic as a wayof extracting and identifying

causal relationships between web server requests and

database query events.

III. THREAT MODEL & SYSTEM ARCHITECTURE

We initially set up our threat model to include our assump-

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
(IJARMATE) Vol. IV, Issue VI, June 2018

 All Rights Reserved © 2018 IJARMATE 10

tions and the types of attacks we are aiming to protect

against.We assume that both the web and the database servers

are vulnerable. Attacks are network-borne and come from the

web clients; they can launch application-layer attacks to

compromise the web servers they are connecting to. The

attackers canbypass the web server to directly attack the

database server. We assume that the attacks can neither be

detected nor prevented by the current web server IDS, that

attackers may take over the web server after the attack, and

that afterwards they can obtain full control of the web server

to launch subsequent attacks. For example, the attackers could

modify the application logic of the web applications,

eavesdrop or hijack other users’ web requests, or intercept

and modify the database queries to steal sensitive data beyond

their privileges.

 On the other hand, at the database end, we assume that the

database server will not be completely taken over by the

attackers. Attackers may strike the database server through

the web server or, more directly, by submitting SQL queries,

they may obtain and pollute sensitive data within the database.

A.Architecture and confinement:

Fig 1: Classic 3-tier Model. The web server acts as the front-end,
with the file and database servers as the content storage back-end.

Fig 2: Web server instances running in containers

All network traffic, from both legitimate users and adver-

saries, is received intermixed at the same web server. If an

attacker compromises the web server, he/she can potentially

affect all future sessions (i.e., session hijacking). Assigning

each session to a dedicated web server is not a realistic option,

as it will deplete the web server resources. To achieve similar

confinement while maintaining a low performance and

resource overhead, we use lightweight virtualization.

 In our design, we make use of lightweight process

containers, referred to as “containers,” as ephemeral,

disposable servers for client sessions. It is possible to

initialize thousands of containers on a single physical

machine, and these virtualized containers can be discarded,

reverted, or quickly reinitialized to serve new sessions. A

single physical web server runs many containers, each one an

exact copy of the original web server. Our approach

dynamically generates new containers and recycles used ones.

As a result, a single physical server can run continuously and

serve all web requests.However, from a logical perspective,

each session is assigned to a dedicated web server and

isolated from other sessions.Since we initialize each

virtualized container using a read-only clean template, we can

guarantee that each session will be served with a clean web

server instance at initialization.We choose to separate

communications at the session level so that a single user

always deals with the same web server. Sessions can represent

different users to some extent, and we expect the

communication of a single user to go to the same dedicated

web server, thereby allowing us to identify suspect behavior

by both session and user. If we detect abnormal behavior in a

session, we will treat all traffic within this session as tainted. If

an attacker compromises a vanilla web server, other sessions’

communications can also be hijacked. In our system,an

attacker can only stay within the web server containers that

he/she is connected to, with no knowledge of the existence of

other session communications. We can thus ensure that

legitimate sessions will not be compromised directly by an

attacker.

 Figure 1 illustrates the classic 3-tier model. At the database

side, we are unable to tell which transaction corresponds to

which client request. The communication between the web

server and the database server is not separated, and we can

hardly understand the relationships among them. Figure 2

depicts how communications are categorized as sessions and

how database transactions can be related to a corresponding

session. According to Figure 1, if Client 2 is malicious and

takes over the web server, all subsequent database

transactions become suspect, as well as the response to the

client. By contrast, according to Figure 2, Client 2 will only

compromise the VE 2, and the corresponding database

transaction set T2 will be the only affected section of data

within the database.

 B.Building the Normality Model:

 This container-based and session-separated web server

architecture not only enhances the security performances but

also provides us with the isolated information flows that are

separated in each container session. It allows us to identify

themapping between the web server requests and the

subsequent DB queries, and to utilize such a mapping model

to detect abnormal behaviors on a session/client level. In

typical 3-tiered web server architecture, the web server

receives HTTP requests from user clients and then issues SQL

queries to the database server to retrieve and update data.

These SQL queries are causally dependent on the web request

hitting the web server. We want to model such causal

mapping relationships of all legitimate traffic so as to detect

abnormal/attack traffic.

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
(IJARMATE) Vol. IV, Issue VI, June 2018

 All Rights Reserved © 2018 IJARMATE 11

 C.Attack Scenarios:

 Our system is effective at capturing the following

types of attacks:

Privilege Escalation Attack: Let’s assume that the website

serves both regular users and administrators. For a regular

user,the web request ru will trigger the set of SQL queries Qu

; for an administrator, the request ra will trigger the set of

admin level queries Qa . Now suppose that an attacker logs

into the web server as a normal user, upgrades his/her

privileges, and triggers admin queries so as to obtain an

administrator’s data.This attack can never be detected by

either the web server IDS or the database IDS since both ru

and Qa are legitimate requests and queries. Our approach,

however, can detect this type of attack since the DB query Qa

 Fig.3: Privilege Escalation Attack

 Fig .4: Hijack Future Session Attack

does not match therequest ru , according to our mapping

model. Figure 3 shows how a normal user may use admin

queries to obtain privileged information.

Hijack Future Session Attack: This class of attacks is

mainly aimed at the web server side. An attacker usually takes

over the web server and therefore hijacks all subsequent

legitimate user sessions to launch attacks. For instance, by

hijacking other user sessions, the attacker can eavesdrop, send

spoofed replies,

and/or drop user requests. A session hijacking attack can be

further categorized as a Spoofing/Man-in-the-Middle attack,

an Exfiltration Attack, a Denial-of-Service/Packet Drop

attack, or a Replay attack.

 Figure 4 illustrates a scenario wherein a compromised web

server can harm all the Hijack Future Sessions by not

generating any DB queries for normal user requests.

According to the mapping model, the web request should

invoke some database queries (e.g., a Deterministic Mapping

(section IV-A)), then the abnormal situation can be detected.

However, neither a conventional web server IDS nor a

database IDS can detect such an attack by itself.

 Fig 5: Injection Attack.

Fig.6:DB Query with out causing Web requests

Direct DB attack: It is possible for an attacker to bypass the

web server or firewalls and connect directly to the database.

An attacker could also have already taken over the web server

and be submitting such queries from the web server without

sending web requests. Without matched web requests for such

queries, a web server IDS could detect neither. Furthermore,

if these DB queries were within the set of allowed queries,

then the database IDS itself would not detect it either.

However,this type of attack can be caught with our approach

since wecannot match any web requests with these queries.

Figure 6 illustrates the scenario wherein an attacker bypasses

the webserver to directly query the database.

 D.Double Guard limitations:

 In this section, we discuss the operational and detection

limitations of DoubleGuard.

Vulnerabilities Due to Improper Input Processing: Cross

Site Scripting (XSS) is a typical attack method wherein

attackers embed malicious client scripts via legitimate user

inputs.In DoubleGuard, all of the user input values are

normalized so as to build a mapping model based on the

structures of HTTP requests and DB queries. Once the

malicious user inputs are normalized, DoubleGuard cannot

detect attacks hidden in the values. These attacks can occur

even without the databases. DoubleGuard offers a

complementary approach to those research approaches of

detecting web attacks based on the characterization of input

values.

Possibility of Evading DoubleGuard:

 Our assumption is that an attacker can obtain “full control”

of the web server thread that she connects to. That is, the

attacker can only take over the web server instance running in

its isolated container. Our architecture ensures that every

client be defined by the IP address and port container pair,

which is unique for each session. Therefore, hijacking an

existing container is not possible because traffic for other

sessions is never directed to an occupied container. If this

were not the case, our architecture would have been similar to

the conventional one where a single web server runs many

different processes. queries. However, this significantly

increases the efforts for the attackers to launch successful

attacks. In addition, users with non-admin permissions can

cause minimal (and sometimes zero) damage to the rest of the

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
(IJARMATE) Vol. IV, Issue VI, June 2018

 All Rights Reserved © 2018 IJARMATE 12

system and therefore they have limited incentives to launch

such attacks.

 Distributed DoS: DoubleGuard is not designed to mitigate

DDoS attacks. These attacks can also occur in the server

architecture without the back-end database.

 IV.MODELING DETERMINISTIC MAPPING AND PATTERNS

 Due to their diverse functionality, different web

applicationsexhibit different characteristics. Many websites

serve onlystatic content, which is updated and often managed

 Finally, in some cases, the web server will have some

periodical tasks that trigger database queries without any web

requests driving them. The challenge is to take all of these

cases into account and build the normality model in such a

way that we can cover all of them.

 As illustrated in Figure 2, all communications from the

clients to the database are separated by a session. We assign

each session with a unique session ID. DoubleGuard

normalizes the variable values in both HTTP requests and

database queries, preserving the structures of the requests and

queries. To achieve this, DoubleGuard substitutes the actual

values of the variables with symbolic values. Figure15 depicts

an example of the normalizations of the captured requests and

queries.

 Following this step, session i will have a set of requests,

which is Ri , as well as a set of queries, which is Qi . If the total

number of sessions of the training phase is N , then we have

the set of total web requests REQ and the set of total SQL

queries SQL across all sessions. Each single web request rm ∈

REQ may also appear several times in different Ri where i can

be 1, 2 ... N . The same holds true for qn ∈ SQL.

 A.Inferring Mapping Relations

 If several SQL queries, such as qn , qp , are always

found within one HTTP request of rm , then we can usually

have an exact mapping of rm → {qn , qp }. However, this is

not always the case. Some requests will result in different

queries based on the request parameters and the state of the

web server. For example, for web request rm , the invoked

query set can sometimes be {qn ,qp } or, at other times, {qp }

or {qq ,qn ,qs }.

 The probabilities for these queries are usually not the same.

For 100 requests of rm , the set is at {qn ,qp } 75 times, at {qp

} 20 times, and at {qq ,qn ,qs } only 5 times. In such a case, we

can find the mapping of rm → qp is 100%, with a rm → qn

possibility of 80% and a rm → qs occurrence at 5% of all

cases. We define this first type of mapping as deterministic

and the latter ones as non-deterministic.

 Below, we classify the four possible mapping patterns.

Since the request is at the origin of the data flow, we treat each

request as the mapping source. In other words, the mappings

in the model are always in the form of one request to a query

set rm → Qn . The possible mapping patterns are as in Figure

7

Deterministic Mapping: This is the most common and

perfectly-matched pattern. That is to say that web request rm

appears in all traffic with the SQL queries set Qn . The

mapping pattern is then rm → Qn (Qn = ∅). For any session in

the testing phase with the request rm , the absence of a query

set Qn matching the request indicates a possible intrusion.On

the other hand, if Qn is present in the session traffic without

the corresponding rm , this may also be the sign of an

intrusion.In static websites, this type of mapping comprises

the majority of cases since the same results should be returned

for each time a user visits the same link.

Empty Query Set: In special cases, the SQL query set may be

the empty set. This implies that the web request neither causes

nor generates any database queries. For example, when a web

request for retrieving an image GIF file from the same web

server is made, a mapping relationship does not exist because

only the web requests are observed. This type of mapping is

called rm → ∅. During the testing phase, we keep these web

requests together in the set EQS

 Fig 7: Overall representation of design patterns

.

No Matched Request: In some cases, the web server may

periodically submit queries to the database server in order to

conduct some scheduled tasks, such as cron jobs for archiving

or backup. This is not driven by any web request, similar to

the reverse case of the Empty Query Set mapping pattern.

These queries cannot match up with any web requests, and we

keep these unmatched queries in a set N M R. During the

testing phase, any query within set N M R is considered

legitimate.The size of N M R depends on web server logic,

but it is typically small.

Non-deterministic Mapping: The same web request may

result in different SQL query sets based on input parameters

or the status of the web page at the time the web request is

received. In fact, these different SQL query sets do not appear

randomly, and there exists a candidate pool of query sets (e.g.

{Qn , Qp , Qq ...}). Each time that the same type of web

request arrives, it always matches up with one (and only one)

of the query sets in the pool. The mapping pattern is rm → Qi

(Qi ∈ {Qn , Qp , Qq ...}). Therefore, it is difficult to identify

traffic that matches this pattern. This happens only within

dynamic websites, such as blogs or forum sites.

 Figure 7 illustrates all four mapping patterns.

 B.Modeling for Static Websites:

 In the case of a static website, the non-deterministic mapping

does not exist as there are no available input variables or

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
(IJARMATE) Vol. IV, Issue VI, June 2018

 All Rights Reserved © 2018 IJARMATE 13

states for static content. We can easily classify the traffic

collected by sensors into three patterns in order to build the

mapping model. As the traffic is already separated by session,

we begin by iterating all of the sessions from 1 to N . For each

rm ∈ REQ, we maintain a set ARm to record the IDs of

sessions in which rm appears. The same holds for the database

queries; we have a set AQs for each qs ∈ SQL to record all the

session IDs. To produce the training model, we leverage the

fact that the same mapping pattern appears many times across

different sessions. For each ARm , we search for the AQs that

equals the ARm . When ARm = AQs , this indicates that every

time rm appears in a session then qs will also appear in the

same session, and vice versa.

 Given enough samples, we can confidently extract a

mapping pattern rm → qs . Here, we use a threshold value t so

that if the mapping appears in more than t sessions (e.g., the

cardinality of ARm or AQs is greater than t), then a mapping

pattern has been found. If such a pattern appears less than t

times, this indicates that the number of training sessions is

insufficient. In such a case, scheduling more training sessions

is recommended before the model is built, but these patterns

can also be ignored since they may be incorrect mappings. In

our experiments, we set t to 3, and the results demonstrate that

the requirement was easily satisfied for a static website with a

relatively low number of training sessions

Fig .8:deterministic mapping using session ID of container (VE)

 Figure 8 illustrates the use of the session ID provided by

the container (VE) in order to build the deterministic mapping

between http requests and the database requests. The request

rA has the set ARA of {2,4,5}, which equals to AQY .

Therefore, we can decide a Deterministic Mapping rA → qY .

We developed an algorithm that takes the input of training

dataset and builds the mapping model for static websites. For

each unique HTTP request and database query, the algorithm

assigns a hash table entry, the key of the entry is the request or

query itself, and the value of the hash entry is AR for the

request or AQ for the query respectively. The algorithm

generates the mapping model by considering all three

mapping patterns that would happen in static websites.

 C.Testing for static websites

 Once the normality model is generated, it can be

employed for training and detection of abnormal behavior.

During the testing phase, each session is compared to the

normality model. We begin with each distinct web request in

the session and, since each request will have only one

mapping rule in the model, we simply compare the request

with that rule. The testing phase algorithm is as follows:

 1) If the rule for the request is Deterministic Mapping r

 → Q (Q = ∅), we test whether Q is a subset of a query

 set of the session. If so, this request is valid, and we

 mark the queries in Q. Otherwise, a violation is detected

 and considered to be abnormal, and the session will be

 marked as suspicious.

 2) If the rule is Empty Query Set r → ∅, then the request

 is not considered to be abnormal, and we do not mark

 any database queries. No intrusion will be reported.

 3) For the remaining unmarked database queries, we check

 to see if they are in the set N M R. If so, we mark the

 query as such.

 4) Any untested web request or unmarked database query

 is considered to be abnormal. If either exists within a

 session, then that session will be marked as suspicious.

In our implementation and experimenting of the static test-

ing website, the mapping model contained the Deterministic

Mappings and Empty Query Set patterns without the No

Matched Request pattern. This is commonly the case for

static websites. As expected, this is also demonstrated in our

experiments in section V.

 D.Modeling of Dynamic Patterns

 In contrast to static web pages, dynamic web pages

allow users to generate the same web query with different

parameters. Additionally, dynamic pages often use POST

rather than GET methods to commit user inputs. Based on the

web server’s application logic, different inputs would cause

different database queries. For example, to post a comment to

a blog article, the web server would first query the database to

see the existing comments. If the user’s comment differs from

previous comments, then the web server would automatically

generate a set of new queries to insert the new post into the

back-end database. Otherwise, the web server would reject

the input in order to prevent duplicated comments from being

posted (i.e., no corresponding SQL query would be issued.) In

such cases, even assigning the same parameter values would

cause different set of queries, depending on the previous state

of the website. Likewise, this non-deterministic mapping case

(i.e., one-to-many mapping) happens even after we normalize

all parameter values to extract the structures of the web

requests and queries. Since the mapping can appear

differently in different cases, it becomes difficult to identify

all of the one-to-many mapping patterns for each web request.

Moreover,when different operations occasionally overlap at

their possible query set, it becomes even harder for us to

extract the one-to-many mapping for each operation by

comparing matched requests and queries across the sessions.

 E.Detection of Dynamic Websites

 Once we build the separate single operation models, they

can be used to detect abnormal sessions. In the testing phase,

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
(IJARMATE) Vol. IV, Issue VI, June 2018

 All Rights Reserved © 2018 IJARMATE 14

traffic captured in each session is compared with the model.

We also iterate each distinct web request in the session. For

each request, we determine all of the operation models that

this request belongs to, since one request may now appear in

several models. We then take the entire corresponding query

sets in these models to form the set CQS. For the testing

session i, the set of DB queries Qi should be a subset of the

CQS. Otherwise, we would find some unmatched queries. For

the web requests in Ri , each should either match at least one

request in the operation model or be in the set EQS. If any

unmatched web request remains, this indicates that the session

has violated the mapping model.

 Fig.9: Overall architecture of Prototype

 V.PERFORMANCE EVALUATION

 We implemented a prototype of DoubleGuard using a web

server with a back-end DB. We also set up two testing

websites, one static and the other dynamic. To evaluate the

detection results for our system, we analyzed four classes of

attacks, as discussed in Section III, and measured the false

positive rate for each of the two websites.

A. Implementation

In our prototype, we chose to assign each user session into a

different container; however this was a design decision. For

instance, we can assign a new container per each new IP

address of the client. In our implementation, containers were

recycled based on events or when sessions time out. We were

able to use the same session tracking mechanisms as

implemented by the Apache server (cookies, mod usertrack,

etc) because lightweight virtualization containers do not

impose high memory and storage overhead. Thus, we could

maintain a large number of parallel-running Apache instances

similar to the Apache threads that the server would maintain

in the scenario without containers. If a session timed out, the

Apache instance was terminated along with its container. In

our prototype implementation, we used a 60-minute timeout

due to resource constraints of our test server. However, this

was not a limitation and could be removed for a production

environment where long-running processes are required.

Figure 9 depicts the architecture and session assignment of

our prototype, where the host web server works as a

dispatcher.

 Initially, we deployed a static testing website using the

Joomla Content Management System. In this static website,

updates can only be made via the back-end management

interface. This was deployed as part of our center website in

production environment and served 52 unique web pages. For

our analysis, we collected real traffic to this website for more

than two weeks and obtained 1172 user sessions.

 To test our system in a dynamic website scenario, we set up

a dynamic Blog using the Wordpress blogging software. In

our deployment, site visitors were allowed to read, post, and

comment on articles. All models for the received front-end

and back-end traffic were generated using this data.

 Fig 10: Performance evaluation using http load. The overhead is

between 10.3% to 26.2%

 B.Container Overhead

 One of the primary concerns for a security system is its

performance overhead in terms of latency. In our case, even

though the containers can start within seconds, generating a

container on-the-fly to serve a new session will increase the

response time heavily. To alleviate this, we created a pool of

web server containers for the forthcoming sessions akin to

what Apache does with its threads. As sessions continued to

grow, our system dynamically instantiated new containers.

Upon completion of a session, we recycled these containers

by reverting them to their initial clean states.

 When we put the parameters at 3 and 10 seconds, the

overhead was about 23%. We also tested using autobench,

which is a Perl script wrapper around httperf. It can

automatically compare the performance of two websites. We

tested demanding rate ranging from 10 to 190, which means

that a series of tests started at 10 requests per second and

increased by 20 requests per second until 190 requests per

second were being requested;any responses that took longer

than 10 seconds to arrive were counted as errors. We

compared the actual requests rates and the replay rates for

bothservers

Figure11 shows that when the rate was less than 110

concurrent sessions per second, both servers could handle

requests fairly well. Beyond that point, the rates in the

container based server showed a drop: for 150 sessions per

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
(IJARMATE) Vol. IV, Issue VI, June 2018

 All Rights Reserved © 2018 IJARMATE 15

second, the maximum overhead reflected in the reply rate was

around 21% (rate of 130). Notice that 21% was the worst case

scenario for this experiment, which is fairly similar to 26.2%

in the http load experiment. When the server was not

overloaded,and for our server this was represented by a rate of

less than110 concurrent sessions per second, the performance

overhead was negligible.

 Fig .11. Performance evaluation using auto bench

 C.Static Web page model in training phase

For the static website, we used the algorithm in Section IV-B

to build the mapping model, and we found that only the

Deterministic Mapping and the Empty Query Set Mapping

patterns appear in the training sessions. We expected that the

No Matched Request pattern would appear if the web

application had a cron job that contacts back-end database

server; however, our testing website did not have such a cron

job. We first collected 338 real user sessions for a training

dataset before making the website public so that there was no

attack during the training phase.

 Fig 12. Time of starting new container

correctly build the entire model. Based on this training

process accuracy graph, we can determine a proper time to

stop the training.

 D.Dynamic modeling and detection dates

 We also conducted model building experiments for the

dynamic blog website. We obtained 329 real user traffic

sessions from the blog under daily workloads.

 Fig 13.False positives vs Training time in static website

 The model building for a dynamic website is different from

that for a static one. We first manually listed 9 common

operations of the website, which are presented in Table I. To

build a model for each operation, we used the automatic tool

Selenium to generate traffic.

 E.Attack Detection

 Once the model is built, it can be used to detect malicious

sessions. For our static website testing, we used the

production website, which has regular visits of around 50-100

sessions per day. We collected regular traffic for this

production site, which totaled 1172 sessions.

1) Privilege Escalation Attack: For Privilege Escalation

Attacks, according to our previous discussion, the attacker

visits the website as a normal user aiming to compromise the

web server process or exploit vulnerabilities to bypass

authentication. At that point, the attacker issues a set of

privileged (e.g., admin-level) DB queries to retrieve sensitive

information. We log and process both legitimate web requests

and database queries in the session traffic, but there are no

mappings among them. during the training

phase,DoubleGuard can capture the unmatched cases

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
(IJARMATE) Vol. IV, Issue VI, June 2018

 All Rights Reserved © 2018 IJARMATE 16

 Fig 14.ROC curves for dynamic models

 2) Hijack Future Session Attack (Web Server aimed attack):

Out of the four classes of attacks we discuss, session hijacking

is the most common, as there are many examples that exploit

the vulnerabilities of Apache, IIS, PHP, ASP, and cgi, to

name a few. Most of these attacks manipulate the HTTP

requests to take over the web server. We first ran Nikto.

3) Injection Attack: Here we describe how our approach can

detect the SQL injection attacks. To illustrate with an

example, we wrote a simple PHP login page that was

vulnerable to SQL injection attack. As we used a legitimate

username and password to successfully log in, we could

include the HTTP request in the second line of Figure 15 4)

Direct DB attack: If any attacker launches this type of attack,

it will easily be identified by our approach. First of all,

according to our mapping model, DB queries will not have

any matching web requests during this type of attack. On the

other hand, as this traffic will not go through any containers, it

will be captured as it appears to differ from the legitimate

traffic that goes through the containers.

VI.CONCLUSION

We presented an intrusion detection system that builds

models of normal behavior for multi-tiered web applications

from both front-end web (HTTP) requests and back-end

database (SQL) queries. Unlike previous approaches that

correlated or summarized alerts generated by independent

IDSes, DoubleGuard forms a container-based IDS with

multiple input streams to produce alerts. Such correlation of

different data streams provides a better characterization of the

system for anomaly detection because the intrusion sensor has

a more precise normality model that detects a wider range of

threats.

 We achieved this by isolating the flow of information from

each web server session with a lightweight virtualization.

Furthermore, we quantified the detection accuracy of our

approach when we attempted to model static and dynamic

web requests with the back-end file system and database

queries.For static websites, we built a well-correlated model,

which our experiments proved to be effective at detecting

different types of attacks. Moreover, we showed that this held

true for dynamic requests where both retrieval of information

and updates to the back-end database occur using the

web-server front end. When we deployed our prototype on a

system that employed Apache web server, a blog application

and a MySQL back-end, DoubleGuard was able to identify a

wide range of attacks with minimal false positives. As

expected, the number of false positives depended on the size

and coverage of the training sessions we used. Finally, for

dynamic web applications, we reduced the false positives to

0.6%..

 REFERENCES

[1]C. Anley. Advanced sql injection in sql server applications.

Technical

 report, Next Generation Security Software, Ltd, 2002.

[2]K. Bai, H. Wang, and P. Liu. Towards database firewalls.

In DBSec

 2005.

[3]B. I. A. Barry and H. A. Chan. Syntax, and

semantics-based signature

 database for hybrid intrusion detection systems. Security

and Commu-

 nication Networks, 2(6), 2009.

[4]D. Bates, A. Barth, and C. Jackson. Regular expressions

considered

 harmful in client-side xss filters. In Proceedings of the 19th

international

 conference on World wide web, 2010.

[5]M. Christodorescu and S. Jha. Static analysis of

executables to detect

 malicious patterns.

[6]M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna.

Swaddler: An

 Approach for the Anomaly-based Detection of State

Violations in Web

 Applications. In RAID 2007.

[7] H. Debar, M. Dacier, and A. Wespi. Towards a taxonomy

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

Available online at www.ijarmate.com

 International Journal of Advanced Research in Management, Architecture, Technology and Engineering
(IJARMATE) Vol. IV, Issue VI, June 2018

 All Rights Reserved © 2018 IJARMATE 17

of intrusion-

 detection systems. Computer Networks, 31(8), 1999.

[8] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna.

Toward Au-

 tomated Detection of Logic Vulnerabilities in Web

Applications. In

 Proceedings of the USENIX Security Symposium, 2010.

[9] Y. Hu and B. Panda. A data mining approach for database

intrusion

 detection. In H. Haddad, A. Omicini, R. L. Wainwright,

and L. M.

 Liebrock, editors, SAC. ACM, 2004.

[10] Y. Huang, A. Stavrou, A. K. Ghosh, and S. Jajodia.

Efficiently tracking

 application interactions using lightweight virtualization. In

Proceedings

 of the 1st ACM workshop on Virtual machine security,

2008.

[11] H.-A. Kim and B. Karp. Autograph: Toward automated,

distributed

 worm signature detection. In USENIX Security

Symposium, 2004.

[12] C. Kruegel and G. Vigna. Anomaly detection of

web-based attacks. In

 Proceedings of the 10th ACM Conference on Computer

and Communi-

 cation Security (CCS ’03), Washington, DC, Oct. 2003.

ACM Press.

[13] Lee, Low, and Wong. Learning fingerprints for a

database intrusion

 detection system. In ESORICS: European Symposium on

Research in

 Computer Security. LNCS, Springer-Verlag, 2002.

[14] Liang and Sekar. Fast and automated generation of attack

signatures:

 A basis for building self-protecting servers. In SIGSAC:

12th ACM

 Conference on Computer and Communications Security,

2005.

[15] J. Newsome, B. Karp, and D. X. Song. Polygraph:

Automatically

 generating signatures for polymorphic worms. In IEEE

Symposium on

 Security and Privacy. IEEE Computer Society, 2005.

 able Sec. Comput, 1(3), 2004.

.

