

60

ISSN (ONLINE): 2454-9762
ISSN (PRINT): 2454-9762

 International Journal of Advanced Research in Management, Architecture, Technology and
 Engineering (IJARMATE)
 Vol. 2, Issue 10, October 2016

Enhancement And Performance Comparison Of
I2C, UART and CAN Bus Protocols

Shri. Kiran B Kadakuntla
Lecturer, E&C Dept.

 Govt. Polytechnic, Hubli, India
Email: kiran.bk800@gmail.com

Abstract—The work presented in this paper addresses the

concepts of Inter Integrated Circuits (I2C), Universal
Asynchronous Transmitter and Receiver (UART) and
Controller Area Network (CAN). It presents the simulation of
I2C, UART and CAN protocol in ISIM simulator and
implementation in FPGA board.

 It gives the architecture details of different protocols
with its logical diagrams and provides the information
regarding the dataflow. It explains how the data transfer
initiates and terminates. Frame format of different protocols
are explained thoroughly and shown its simulation results.
Here, it is also presented the Resistor Transistor Logic (RTL)
diagram of all the protocols. In this, implementation of the
different protocols for the application of fuel measurement is
explained with the help of practical implementation using the
FPGA kit.

This paper provides various performance comparisons
such as Timing, Data Rate, Architecture complexity etc. It also
covers some of the advancement in different protocols like
parity bit addition in I2C Protocol, CRC addition in I2C
protocol, CRC addition in UART protocol and Parity addition
in CAN protocol. The advancement in each protocol shows
how to increase the data rate and decrease the architecture
complexity. It also gives the implementation details of these
advancements along with the data rate and timing information.

Keywords—i2c, can, uart, bus protocol

I. INTRODUCTION

Bus is a channel which connects multiple devices and allows
flow of information between devices or units. Bus usually
carries signal like address signals, data signals, clock signals
etc. As Bus is shared between many devices, rules are
necessary to establish a proper communication. These rules
are called Protocols. Buses can be classified as synchronous
and asynchronous based on whether a communication is
controlled by clock or not. Buses can be classified as serial
and parallel, based on whether data bits are sent through
Parallel wires or multiplexed into single wire.

Serial communication has advantage of having less
hardware requirement compared to parallel communication
but at the cost of low data rate. Where as in parallel
communication, data rate is high with the more hardware
requirement.

The examples of serial buses are I2C, UART, CAN etc.
and parallel buses are ISA, PCI, EISA and VESA etc.

This paper deals about introduction of I2C bus, CAN bus
and UART bus and its implementation in the FPGA board. It
also deals about the improvements can be introduced in the
different protocols like I2C, CAN and UART.

II. LITERATURE SURVEY

1. Inter Integrated Circuits (I2C):

I2C is a serial communication protocol. There are many
other serial protocols for serial data communication but they
require more number of pins. But as per Moores law
statement the transistors on the chip getting double
approximately every 18 months and less number of pin
connections are available for serial communication hence
I2C protocol preferred over other protocols [1][2]. It is a
popular among all other serial communication protocols due
to its collision detection and arbitration feature [1]. It is a two
wire bi-directional bus that provides more efficient method
of data transmission [3].

I2C has two bidirectional wires; those are SDA (Serial
Data line) and SCL (Serial Clock line). The devices
connected by I2C are identified by a unique address.

In this, the device which initiates the action by
producing clock is called as Master and all other devices
connected in the network are called as Slaves [1]. It supports
multi-master operation but only one device is allowed to
initiate the data transfer. The device which sends data onto
the I2C bus is called transmitter and device which receives
the data from bus is called as receiver [1].

The Communication over I2C bus consists of:
Generation of Start signal, Transfer of Slave address, and
Transfer of Data and Generation of Stop signal [2]. The data
transfer initiation is indicated by sending Start signal
followed by the address of slave device. Once the slave is
addressed, data transfer takes place. The end of data transfer
is signaled by the Stop signal [2].

2. Controller Area Network (CAN):

Controller Area Network in short called as CAN
protocol. CAN is a serial data communication protocol
developed by Bosch in the early 1980s [14]. It is mainly
developed to solve the problem exists in the automobiles.

The automobile vehicles have complex electronic devices
like engine ignition, air bag controller, anti braking system
etc.

CAN is a bi-directional bus which is very popular for its
error detection and correction mechanism. CAN follows the
Open System Interconnect (OSI) model and uses only
Physical layer and Data link layer [8].

CAN format has data frame, remote frame, error frame
and overload frames. Data frame starts with the start of frame
(SOF) bit followed by eleven bits of identifier and remote
transmission request (RTR) bit. Then it is followed by six
bits of control field and then data field. Data field is followed
by sixteen bits of CRC bits which enables error detection and
correction. CRC field is followed by one acknowledgment
bit (ACK) and seven end of frame (EOF) bits. And every
CAN format end with Inter frame space (IFS) [5]. [4]
proposed a secure hash message authentication code. A
secure hash message authentication code to avoid certificate
revocation list checking is proposed for vehicular ad hoc
networks (VANETs). The group signature scheme is widely
used in VANETs for secure communication, the existing
systems based on group signature scheme provides
verification delay in certificate revocation list checking. In
order to overcome this delay this paper uses a Hash message
authentication code (HMAC). It is used to avoid time
consuming CRL checking and it also ensures the integrity of
messages. The Hash message authentication code and digital
signature algorithm are used to make it more secure . In this
scheme the group private keys are distributed by the roadside
units (RSUs) and it also manages the vehicles in a localized
manner. Finally, cooperative message authentication is used
among entities, in which each vehicle only needs to verify a
small number of messages, thus greatly alleviating the
authentication burden. [6] discussed about Reconstruction of
Objects with VSN. By this object reconstruction with feature
distribution scheme, efficient processing has to be done on
the images received from nodes to reconstruct the image and
respond to user query. Object matching methods form the
foundation of many state- of-the-art algorithms. Therefore,
this feature distribution scheme can be directly applied to
several state-of- the-art matching methods with little or no
adaptation. The future challenge lies in mapping state-of-the-
art matching and reconstruction methods to such a
distributed framework. The reconstructed scenes can be
converted into a video file format to be displayed as a video,
when the user submits the query. This work can be brought
into real time by implementing the code on the server
side/mobile phone and communicate with several nodes to
collect images/objects. This work can be tested in real time
with user query results.

3. Universal Asynchronous Receiver Transmitter
Controller (UART):

UART is a one of the serial communication bus. It is
used to connect two devices. As this bus does not use the
clock for synchronization it is named as Asynchronous bus.
A UART contains both transmitter and receiver. It does the
data conversion of parallel to serial during transmission and
converts serial to parallel at the receiver [12].

Since UART does not pass the clock along with the data,
receiver generates its local clock and in advance both
transmitter and receiver agree on timing parameter. As
UART is used to communicate between only two devices
there is no necessity of destination addressing. The UART is

mainly used for low speed, low cost and short distance
communication [13].

The UART mainly including three main components
such as transmitter, receiver and baud rate generator. Baud
rate generator is used as frequency divider [12].

In transmitter of UART, a start bit is added to beginning
of the data bits. A start bit is added to indicate the receiver
that data bits arriving. For every word of data one parity bit
is generated and sent after the data bits. Parity bit helps the
receiver to check whether it is received correct data. After
parity bit a stop bit is sent to indicate the end of data
transmission [11]. In this, time taken to transmit each bit is
depends on the baud rate. The baud rate may be 4800, 9600
or 19200 bauds [11].

III. INTER INTEGRATED CIRCUITS (I2C)

1. Introduction of I2C

Inter Integrated Circuit (I2C) was introduced by Philips
which allows communication between faster devices and
slower devices through a serial data bus without having data
loss.

The I2C bus is a two wire, duplex serial bus and it offers
a simple and efficient way of short distance data transmission
between different devices. It is low-bandwidth, simple, short
distance protocol. Standard I2C device operate at speed up to
100kbps and fast mode operate at speed up to 400kbps.

 It has in-built address hence multiple devices can be
connected together easily. The I2C has two signals i.e., serial
data (SDA) signal and serial clock (SCL) signal as shown in
figure. Every device connected by the I2C bus has unique
address and it is addressable by using software. During data
transfer devices are considered as master or slaves. A master
is the main device which takes initiation in data transmission
over the bus and also takes initiation in generation of clock
signals. This protocol supports multiple masters but only one
device can be a master at a time. Any other device addressed
at that time will be known as slave. Both master and slave
can transfer and receive data. The device which sends data
onto the I2C bus is called transmitter and device which
receives the data from bus is called as receiver.

Fig 1.1: Logical diagram of I2C Master-Slave

2. I2C Protocol

According to the specification of I2C protocol the device
which starts the data transfer onto bus is called as master.

The four parts of a standard I2C communication is

 Generation of START signal.
 Transfer of Slave address.
 Transfer of Data.
 Generation of STOP signal.

3. Simulation Results

The I2C master and slave has been designed using HDL and
simulated using ISim.

Figure.1.2. ISim simulation for writing data to slave

Figure 1.2 shows the simulation result of I2C developed in
verilog, which shows the data transfer from master to slave
serially through the SDA.

4. FPGA Synthesis Results
Xilincs version 14.2 is used for synthesizing I2C master and
slave design on FPGA sparton3.

HDL (Hardware Description Language) Synthesis
Report: Figure 1.3 shows the HDL Synthesis Report
obtained from XILINX 14.2

Figure1.3. HDL Synthesis Report

Device Utilization Summary on FPGA: Table No. 1.1
shows the Device utilization Summary of the I2C Master-
Slave. The summary shows that minimum resources are
utilized by the I2C Master-Slave as only 4% slices, 2% Flip
Flops and 4% of LUTs are utilized.

Table No.1.1 Device Utilization Summary

Timing Summary of I2C: Figure 1.4 gives the timing
summary of the I2C Master-Slave design.

Figure 1.4 Timing Summary of I2C Master-Slave

5. Implementation of I2C protocol in FPGA
I2C bus protocol is implemented for the application of fuel
measurement in automobile using the FPGA

Figure 1.5 Implementation of Fuel level measurement using I2C

protocol

Figure 1.5 shows the block diagram of I2C implementation
for fuel level measurement using FPGA Development
board.

In this fuel level is measured using fuel level
sensor and fuel level is sent to Master device. Master device
sends the fuel level data to slave device in the I2C format.
Slave device separates the fuel level data from received data
which is in the I2C data format and sent to display device.
Data transfer using i2c protocol: Fuel level is in the form
of analog and ADC0804 is used to convert analog to digital.
The digital data is sent to master node designed in FPGA.
Master node converts fuel level data into I2C format and
sent to slave node designed in the FPGA. Slave node
receives data in the form of I2C format and recovers the fuel
level data. This data is sent to Display System.

6. Conclusion

The I2C bus design is simplified using verilog VHDL.
It shows that designer can prepare their design independent
of any particular fabrication technology. Any advancement
in technology or new technology can be evaluated by using
advanced fabrication technology and feed the design results
to the logic synthesis and create a new gate level netlist. The
logic synthesis result shows the circuit area and timing
information for the new technology.

IV. CONTROLLER AREA NETWORK (CAN)

1. Introduction

Controller Are Network (CAN) was first introduced by
Bosch in the early 1980s. CAN protocol is very popular in
the automobile applications and also it is used in trains,
boats and many other systems. Need of CAN increased as
more and more vehicles contain network of many electronic
devices. CAN has popularity due to its high reliability and it
become an international standard, i.e., ISO 11898 and ISO
11519.

Before CAN protocol was invented, in the automobile
all electronic devices used to connect using wires (point to
point wiring) as shown in figure

Figure 1.6 Point to point connection

Point to point wiring works fine for limited number of
devices but as number of devices increases communication
become difficult using point to point wiring. Controllers
Area Network protocol was designed to address the above
said problem. It defined many rules using which many
devices can share the data through a common serial bus and
it reduced the complexity and bulkiness of the system.
CAN is a multi-master protocol, means it supports multiple
devices to operate as a master. It supports addition of new
devices without changing the original hardware. It has error
checking feature to prevent the fault in the operation and it
has many advantage like low cost, high reliability and high
flexibility etc.

2. CAN Protocol

Various nodes connected by CAN network and each
node has a host controller which is responsible for proper
functioning of node in the network. Along with host
controller, each node has CAN Controller and CAN
Transceiver. Function of the CAN controller is to convert
the messages of node in according to the CAN protocol. As
it supports multi masters, every node is able to read and
write on to the CAN bus. Whenever any node has data to
send on the bus it verifies the availability of the bus then
writes onto the bus.

Generally Protocols are classified into two types:
1) Address based and 2) message based.

In address based protocol each data packet contains
the address of destination device. In contrast the message
based on protocol, a predefined unique ID is used to identify
the message.

CAN protocol operate on message based communication. A
unique identification number is assigned to each message in
CAN.

 In CAN messages are sent in frames.

Figure 1.7 CAN Frame format

Figure 1.7 shows the CAN frame format. The
various fields in CAN are as follows.
SOF – Start of frame bit. Synchronization of the nodes on
the bus is done by this and it indicates the initiation of the
message. Logic “0” on this bit indicates the starting of the
frame.
Identifier – It shows the node which has access to the bus.
It is of 11bit length.
RTR – Remote Transmission Request. It differentiates
between data frame and remote frame. Logic “0” on this bit
indicates it as a data frame and Logic “1” as remote frame.
IDE – Identifier Extension. It specifies the frame format.
Logic “0” on this bit indicates as standard frame and Logic
“1” as extended frame.
R0 – Reserved bit. It is reserved for future use.
DLC – Data Length Code. It is four bit data length code and
it has number of bytes to be transmitted.
DATA – This field stores the application data ranging from
0 to 64 bits to be transmitted.
CRC – Cyclic Redundancy Check. It is of 16bit and it
including the checksum of the preceding data for error
detection.
ACK – Acknowledge bit. It indicates acknowledgement is
positive or negative. When correct data received, logic “1”
on this field is overwritten by logic “0”.
EOF – End of Frame. It is a 7 bit field indicates end of
frame.
IFS – Inter Frame Space. It separates the consecutive
messages. It shows the space between two frames. This
IFS time allows nodes for internal processing before
commencement of the next frame.

3. Simulation Results
The CAN Source and Destination has been developed in
HDL and simulated using ISim and is used to verify the
functioning of the design.

 Figure 1.8. ISim simulation for writing data source to destination
Figure 1.8 shows the simulation result of CAN protocol
developed in Verilog, which shows the data transfer from
source to destination.

3. FPGA Synthesis Results
Xilincs 14.2 has been used for the synthesis of CAN Source
and Destination on FPGA.

HDL (Hardware Description Language) Synthesis
Report: Figure 1.9 shows the HDL Synthesis Report
obtained from XILINX 14.2

Figure 1.9. HDL Synthesis Report

Device Utilization Summary on FPGA:
Table No. 1.2 shows the Device utilization Summary of the
CAN Source and Destination.

The summary shows the resources utilized by the CAN
Module is only 10% slices, 4% Flip Flops and 9% of LUTs
are utilized.

Table No.1.2: Device Utilization Summary

Timing Summary: Figure 1.11 gives the timing summary
of the CAN Source and Destination design.

Figure 1.11 Timing Summary of I2C Master-Slave

Total memory usage is 203212 kilobytes

4. Implementation of CAN protocol in FPGA
CAN protocol is implemented for the application of fuel
measurement in automobile using the Xilinx sparton3
development board.

Figure 1.12 Implementation of Fuel level measurement using CAN

protocol

Figure 1.12 shows the block diagram of CAN
implementation for fuel level measurement using FPGA
Development board.

In this fuel level is measured using fuel level sensor and fuel
level is sent to source device. Source device sends the fuel
level data to destination device in the CAN format.
Destination device separates the fuel level data from
received data which is in the CAN format and sent to
display device.

Data transfer using CAN protocol: Fuel level is in the
form of analog and ADC0804 is used to convert analog to
digital. The digital data is sent to source node designed in
FPGA. Source node converts fuel level data into CAN
format and sent to destination node designed in the FPGA.
Destination node receives data in the form of CAN format
and recovers the fuel level data. This data is sent to Display
System.

5. Conclusion

The design of CAN bus is simplified using verilog VHDL.

V. UNIVERSAL ASYNCHRONOUS RECEIVE-
TRANSMIT (UART)
1. Introduction
 Universal asynchronous receive/ transmit (UART)
is a simple way to share the data between two different
systems. It is used for long distance communication. It
converts parallel data to serial and vice versa. It includes
both transmitter and receiver.

During transmission, UART fetches the data word
in parallel and converts it into serial and transmits it.
Similarly during reception, UART receives data serially and
converts it into parallel and send it to a receiver system.
Since the UART is asynchronous, the receiver does not
know when the data will come, hence Start bit is used to
indicate the receiver that the transmitter is about to send the
data. The receiver generates the local clock to synchronize
with the transmitter. Both transmitter and receiver agreed to
common clock well before the communication is
established.

The UART adds the extra bit to create error free
communication.

2. UART Protocol
UART mainly has three components such as transmitter,
receiver and baud rate generator.
2.1 UART Transmitter: UART Transmitter function is to
convert the 8 bit data parallel data to serial. Transmitter adds
the extra bits to data bits such as Start bit, Parity bit, and
Stop bit.
Start Bit: It is to indicate the receiver that transmitter about
to send data bits.
Parity bit: It is sent to receiver to detect the error in the
received data.
Stop Bit: It is to indicate the receiver about the completion
of the data transmission by the transmitter.

Figure 1.13 UART Frame Format

Figure 1.13 shows the UART frame format. It shows that
data transfer begins with the start bit, followed by the 8 bit
of data bits. After entire data bits are sent the transmitter
sends the one bit of parity bit which is generated using data
bits.

2.2 UART Receiver: UART Receiver function is to receive
the data serially sent by transmitter. It waits for the start bit
and after start bit, it receives the 8 bit data and converts it to
parallel. Receiver calculates the parity bit based on the
received data bits and compares the calculated parity bit
with the received parity bit. If both are same then it
considers the received data is error free.

2.3 Baud Rate Generator: It is used to generate the baud
rates for the both transmitter and receiver.

Standard baud rates are multiple of 9600bps like 19200 bps,
38400 bps, 57600 bps, 115200 bps, 230400 bps, 460800 and
bps, 921600 bps

3. Simulation Results
The UART protocol has been developed in verilog and
simulated using ISim and it is used to check the functioning
of the design.

Figure 1.14 ISim simulation for sending data from source to

destination using UART protocol

Figure 1.14 shows the simulation result of data transfer from
one device to other using UART protocol.
4. FPGA SYNTHESIS RESULTS
Xilincs 14.2 has been used for the synthesis of UART
protocol on FPGA.

HDL (Hardware Description Language) Synthesis
Report: Figure 1.15 shows the HDL Synthesis Report
obtained from XILINX 14.2

Figure 1.15 HDL Synthesis Report

Device Utilization Summary on FPGA:
Table No. 1.3 shows the Device utilization Summary of the
UART Source and Destination.
The summary shows the resources utilized by the UART as
only 3% slices, 1% Flip Flops and 3% of LUTs are utilized.

Table No.1.3 Device Utilization Summary

Timing Summary: Figure 1.16 shows the timing summary
of the UART source and destination design.

Figure 1.16 Timing Summary of UART source and destination

5. Implementation of UART protocol in FPGA
UART protocol is implemented for the application of fuel
measurement in automobile using the Xilinx sparton3
development board.

Figure 1.17 Implementation of Fuel level measurement using

UART protocol

Figure 1.17 shows the block diagram of UART
implementation for fuel level measurement using FPGA
Development board.

In this fuel level is measured using fuel level sensor and fuel
level is sent to source device. Source device sends the fuel
level data to destination device in the UART format.
Destination device separates the fuel level data from
received data which is in the UART format and sent to
display device.

Fuel Measurement: Fuel measurement is made using
potentiometer. Potentiometer is connected to ball which
floats on fuel.

Figure 1.18 Fuel Measurement

Figure 1.18 shows the arrangement of fuel measurement. It
shows that potentiometer is connected to floating ball. Ball
floats on fuel and as fuel level vary, ball position changes
and it results in change in potentiometer value.
Potentiometer value is taken as input data and sent to the
FPGA Board.
Data transfer using UART protocol: Fuel level is in the
form of analog and ADC0804 is used to convert analog to
digital. The digital data is sent to source node designed in
FPGA. Source node converts fuel level data into UART
format and sent to destination node designed in the FPGA.
Destination node receives data in the form of UART format
and recovers the fuel level data. This data is sent to Display
System.

Figure 1.19 Analog to Digital Converter using ADC0804

Display System: Destination node sends the data to the
display device. LCD is used to display the fuel level. Fuel
level data is converted into equivalent ASCII code to
display on the LCD.

Figure 1.20 LCD display

6. Conclusion
The design of UART bus is simplified using verilog VHDL.

VI. ENHANCEMENT AND PERFORMANCE

COMPARISON OF I2C, UART AND CAN BUS

PROTOCOLS
This chapter gives the performance comparison between
Inter Integrated Circuit (I2C), Universal asynchronous
receives and transmits (UART) and Controller area network
(CAN) protocol.

Data Size: 256 Bytes

Data Size: 512 Bytes

Data Size: 1024 Bytes

Data Size: 2048 Bytes

Above table shows the performance comparison of different
protocols for various sizes of data.
It shows that there is no much difference in timing and data
rate for different data sizes but in comparison of difference
protocol it shows that CAN protocol has very low Data rate.
I2C has slight higher data rate compared to UART protocol.

VII. ENHANCEMENT IN BUS PROTOCOL

1. I2C Protocol
Present Inter Integrated Circuit has a following frame
format.

Figure 1.21 Present I2C frame format

In this, it checks only whether slave has received data but it
does not have facility of error detection.
The following enhancements can be introduced in I2C
protocol for error detection.

1.1 I2C with parity bit addition:

Figure 1.22 I2C with parity addition

Above figure shows the addition of parity bit in the I2C
format. With the help of parity bit, receiver can check
whether received data has error.

Table 1.4. Timing and Data rate comparison of I2C & I2C with

parity bit
Above table shows the comparison of data rate of I2C
format with parity bit and without parity bit (Present). It
shows that adding parity bit to I2C format does not affects

the data rate but it will provides the facility of error
detection.

1.2 I2C with CRC bits addition

Figure 1.23 I2C with CRC addition

Above figure shows the addition of 8 bits of CRC to the I2C
format. 8 CRC bits are sent after every data set.

Table 1.5 Timing and Data rate comparison of I2C & I2C with

CRC bits

Above table shows the comparison of data rate of I2C
format with CRC bits and without CRC bits. It shows that
adding CRC bits to I2C format decreases data rate by half
but it adds the advantage of error detection.
It can be used where low data rate is acceptable for the error
detection feature.

2. CAN Protocol
Following format shows the present CAN protocol format.

Figure 1.24 Present CAN protocol

It is very popular in automobile applications. It has the
advantage of error detection using CRC bits. But data rate of
CAN protocol is very low compared to all other protocols.

The following enhancements can be introduced in CAN
protocol to increase the data rate.

2.1. CAN without CRC frame

Figure 1.25 CAN without CRC bits

Above figure shows the CAN protocol without the CRC
bits. By removing CRC bits in CAN protocol reduces the
error detection capability but increases the data rate.

Table 1.6. Timing and Data rate comparison of CAN & CAN

without CRC bits.

Above table shows that by removing CRC bits in the CAN
protocol increases the data rate from 0.695Mbps to

0.808Mbps. It can be used where data rate is of prime
concern compared to error detection capability.

2.2. CAN with replacing CRC bits with parity bit.

Figure1.26 CAN replacing 16 CRC bits with 1 parity bit.

Above figure shows the CAN frame without the CRC bits
but it has added parity bit to provide error detection.

Table 1.7 Timing and Data rate comparison of CAN & CAN with

CRC replaced by parity bit.

Above table shows that by replacing 16 bits of CRC with
one bit of parity increases the data rate from 0.695Mbps to
0.800Mbps. It does not give exact location of error bit but it
shows the presence of error in the received data.

3. UART Protocol

Following format shows the UART protocol format.

Figure 1.27 UART frame format

The UART protocol has the parity bit to detect the error in
the received bits. The UART protocol can be altered as
following to increase the error detection capability by
replacing parity bit by CRC bits.

3.1. UART with CRC frame

Figure 1.28 UART with CRC bits

Above figure shows the UART protocol with 8 bits of CRC
replacing one parity bit.

Table 1.8 Timing and Data rate comparison of UART & UART

with CRC bits

Above table shows that by replacing parity bit with 8 bits of
CRC, decreases the data rate but it will increase the single
bit and multi bits error detection capability of UART
protocol.

VIII. CONCLUSION AND FUTURE WORK

In this thesis we have worked on different bus protocols
and modeled in hardware. The simulation results obtained in
Xilinx for different bus protocols have been used to
compare its timing and data rate. The work presented in this
paper gives clear differences between different bus
protocols and enhancements in each protocol. The future
work can be carried out by concentrating on enhancement in
each protocol mentioned in this paper by simulation and
implementing the changes in the FPGA board.

BIBLIOGRAPHY

[1] Shivani Mehrotra, Nisha Charaya, “ Design And Implementation Of
I2C Single Master On Fpga Using Verilog”, ISSN 2347-6680 (E), 2015
pp. 001-005.

[2] MR. J. J PATEL, 2 PROF B. H. SONI, “Design And Implementation

Of I2C Bus Controller Using Verilog”, ISSN: 0975 – 6779| NOV 12 TO
OCT 13 | VOLUME – 02, ISSUE – 02, pp. 520-522.

[3] G.KrishnaKishore, K.Shruti, M.Varsha, “Design and Simulation of I2C
bus using Verilog”, ISSN: 2231-5381, 2014 pp. 244-247.

[4] Christo Ananth, M.Danya Priyadharshini, “A Secure Hash Message

Authentication Code to avoid Certificate Revocation list Checking in
Vehicular Adhoc networks”, International Journal of Applied
Engineering Research (IJAER), Volume 10, Special Issue 2,
2015,(1250-1254).

[5] Robert Bosch GmbH, “CAN Specification”, Version 2.0, Postfach 50,

D-7000 stuttgat 1, 1991 pp. 010-021.

[6] Christo Ananth, M.Priscilla, B.Nandhini, S.Manju, S.Shafiqa
Shalaysha, “Reconstruction of Objects with VSN”, International Journal
of Advanced Research in Biology, Ecology, Science and Technology
(IJARBEST), Vol. 1, Issue 1, April 2015, pp:17-20.

[7] Tejaswini Hulawale, Neha Koul, Shivang Gupta, “FPGA Based Can

Protocol Controller”, ISSN (online): 2348 – 7550, 2015 pp. 581-587.

[8] Vikash Kumar Singh, Kumari Archana, “Implementation Of 'CAN'

Protocol In Automobiles Using Advance Embedded System”, ISSN:
2231-5381, 2013 pp. 4422-4424.

[9] Tsou, Tung-Hsun, "An Implementation of Controller Area Network Bus

Analyzer Using Microblaze and Petalinux" (2013). Master's Theses. pp
174-174.

[10] Amit Kumar Bhadrawat1, Prof. Sourabh Sharma, “DMR Based CAN

Bus Control System Implemented into FPGA”, ISSN: 2349 – 4689,
Volume-04, Number - 01, 2014 pp. 039-042.

[11] Bhavna Mahure And Rahul Tanwar, “Uart With Automatic Baud Rate

Generator And Frequency Divider”, ISSN: 0976-8742 & E-ISSN: 0976-
8750, Volume 3, Issue 1, 2012, pp. 265-268.

[12] G. Bhanu Priya, B. Lakshman Murthy, P. Pragathi, “An Advanced

Universal Asynchronous Receiver Transmitter (UART) Design &
Implementation By Using VERILOG”, ISSN: 2278 – 909X , 2014 pp.
796-800.

[13] Poonam R. Kedia, N.N.Mandaogade, Sneha R. Gade, “A Review

Paper on Implementation of UART Controller with Automatic Baud
Rate Generator using FPGA”, ISSN: 2321-7782, 2014 pp. 280-283

[14] Karl Henrik Johansson,, Martin Torngren,Lars Nielsen, “Vehicle

Applications of Controller Area Network”, pp. 004-010.

68

